WARDALE ENGINEERING & ASSOCIATES

7D Reay Street Inverness IV2 3AL Great Britain CLASS 5AT 4-6-0: FUNDAMENTAL DESIGN CALCULATIONS

1. GENERAL CALCULATIONS.

1.3.F. PRELIMINARY BASIC CALCULATIONS (final version).

Notes.

- 1. These calculations are the original calculations [1.3.] with data from the FDC's substituted for the original figures (given here in brackets) where it is different. Any original material no longer valid is struck through and additional material is underlined (for ease of reference to FDC 1.3.).
- 2. The calculations refer to a specific performance level, defined by item nos. [1] and [2]. Any individual performance figures given in the calculations do not necessarily give the maximum which will be achieved.
- 3. The SI system is mostly used, with Imperial units given for some items for the convenience of those not familiar with SI units. Unless otherwise stated "ton" refers to metric ton of 1000 kg. $N*m^3 = m^3$ at NTP.
- 4. Numbers in square brackets [] in column 2 refer to calculation item numbers in the Fundamental Design Calculations (FDC's): firstly the number identifying the calculations concerned, followed by the item number within those calculations given in round brackets (), e.g. [1.1.(16)] refers to calculations 1.1. item no. (16). Only a single number given in square brackets refers to an item number within these calculations.
- 5. To save space, unit conversion factors for numerical consistency, where used, are <u>not</u> shown in the calculations. Any apparent small numerical discrepancies are due to giving data to limited places of decimals but to taking the full figure for any calculations involving that data.
- 6. References are shown in superscript square brackets [] and are given in full at the end of the calculations.
- 7. Fundamental data is in **bold** type.

Item No.	Item	Unit	Amount
1	Maximum sustainable drawbar power at constant speed on level tangent	kW	1 890
	track, trailing a high capacity tender [Calculations 1.1. Fig. 1.1.1]:	hp	2 535
2	Speed at the above power:	km/h	113
		mph	71
		m/s	31,4
3	Equivalent drawbar tractive effort at [1] and [2] = [1] \div [2]:	kN	60,2
4	Maximum axle load (same as BR Class 5MT 4-6-0):	ton	20,0
5	Preliminary Estimate of Class 5AT axle loads, at full supplies:		
	leading bogie (2 axles combined): (minimum value given: may be increased	ton	20,0
	if greater centring force required for lateral stability reasons)		Í
	leading coupled axle:	ton	20,0
	driving axle:	ton	20,0
	trailing coupled axle:	ton	20,0
	tender axles (each of 4 axles in 2 bogies):	ton	20,0
6	Total mass of engine (full boiler): (BR Class 5MT = 77,2 tons)	ton	80,0
7	Total mass of tender, full supplies:	ton	80,0
	(Note: the large high-capacity tender is an operational requirement due to the		
	absence of convenient watering facilities: heaviest former British tender =		
	A4 type = 66 tons gross mass.)		
8	Total mass of engine and tender, full supplies:	ton	160,0
9	Adhesive mass:	ton	60,0
10	Approximate gross: tare mass ratio for rectangular section tender of		
	monocoque construction (c.f. best Bulleid tender = 2,67):	-	3,0
	Note: minimizing tender mass for a given quantity of supplies is of		
	particular importance for high-speed operation, and it would be hoped to		
	increase the gross: tare mass ratio beyond the conservative figure given.		
11	Tender tare mass = $[7] \div [10]$:	ton	26,7
12	Total supplies (fuel + water) = $[7] - [11]$:	ton	53,3
	(highest former British figure (largest MN tender) = 32,3 tons)		
13	Average supplies during operation as a fraction of total supplies, assumed:	-	0,67
14	Average tender supplies = [12] x [13]:	ton	35,5

Item No.	Item	Unit	Amount	
15	Average tender gross mass in service = $[11] + [14]$:		ton	62,2
16	Average mass of locomotive in service = $[6] + [15]$: (note: further performance figures are calculated on the basis of this average mass).		ton	142,2
17	Required sustainable cylinder (indicated) power at [2], from [FDC 1.1. 1.1.1)]:	(Fig.	kW hp	2 380 3 192
18	Cylinder (indicated) tractive effort at [2] and $[17] = [17] \div [2]$:		kN	75,8
19	Maximum cylinder (indicated) power from [1.1. (Fig. 1.1.1)]:		kW	2 580
			hp	3 460
20	Maximum indicated power per ton of engine mass = [19] ÷ [6]: (BR Class 5MT max. indicated power/ton of engine mass = 17,0 kW/to	on)	kW/tor	
21	Indicated power per ton of engine mass for other high power locos, for comparison: SAR 26 Class No. 3450 (peak of power curve): SNCF 240P Class: Therefore the Class 5AT figure is realistic, given its superior technolog	kW/tor	28,7	
22	Coupled wheel diameter (same as BR Class 5MT 4-6-0):		mm	1 880
22			in	74
23	Coupled wheel rotational speed at $[2] = [2] \div (\pi \times [22])$:		Hz	5,3
24	Indicated tractive effort per unit adhesive mass at [23] = [18] ÷ [9]:		kN/ton	1,3
25	Max. indicated t. e. per unit adhesive mass at [23] for SAR 26 Class N			
	3450: (>> Class 5AT figure, which is therefore considered to be realisticated as the second of the s	c).	kN/ton	
26	Nominal maximum continuous operating speed in mph is taken as the		mph	111
	'1,5 x diameter' speed (AAR std. for motion design), = 1,5 x [22(inche	(s)] =	km/h	178
	This is rounded up to:	_	km/h	180
27	The locomotive will be tested at 10% over the maximum operating spe	ed,		100
	hence maximum design speed = 1,10 x [26]:		km/h	198
	This is rounded up to:		km/h	200
20	All relevant detail design work shall be based on this speed	mph	125	
28	Coupled wheel rotational speed at $[26] = [26] \div (\pi \times [22])$:		Hz	8,5
29	Boiler pressure: (the given figure is the normal maximum working (ga			
	pressure: the boiler may be designed for and the safety valves set to a s		kPa	2 100
	higher figure (2 130 kPa) for ease of keeping the working pressure in s		psi	305
	without the safety valves lifting). (cf. A T & S Fe 2-10-4 b. p. = 310 ps	si)		
30	Engine unit. The preferred choice of engine, considering <i>all</i> relevant	1		
	parameters, is 2-cyl. simple. The calculations are made for a 2-cyl. sim			
	and show that the desired performance can be realized with this simple			
	type of engine, having perhaps a lower level of cylinder performance t	nan		
	more complex and expensive multi-cylinder types. (Note: mass of			
	reciprocating parts per side not to exceed <u>approximately</u> 250 kg (<u>actual</u>	mass		2
21	= 260 kg)) Hence no. of cylinders:		/ •	2 200 / 21 5
31	Piston stroke (made long for optimum cylinder efficiency):	mm		800 / 31,5
32	Mean piston speed at $[2] = [23] \times [31] \times 2$:		ft/min	8,5 / 1 674
33	Mean piston speed at [26] = [28] x [31] x 2:	m/s/	ft/min	13,5 / 2 666
34	Various comparisons of mean piston speed:	п		
	SAR 26 Class no. 3450 at speed for maximum indicated power (122 kg	m/h		10.2
	by differentiating equation [1.1.(11)]:		m/s	10,2
	NYC 'Niagara' 4-8-4 at 160 km/h:		m/s	11,5
	N & W J Class 4-8-4 at reported maximum speed of 176 km/h:		m/s	14,2
	LNER A4 Class at 202 km/h:		m/s	11,7
	BR 9F Class at 144 km/h:		m/s	11,9
	Given the 5AT's superior front end compared to these locomotives, the figures are considered to confirm the acceptability of items [32] & [33]			
35	Sample starting coefficients of adhesion for 2 cylinder and 4 cylinder	ŀ		
33	(opposed crank) 6-coupled tender engines:			
	(opposed crank) 6-coupled tender engines: BR Standard Class 5MT:			0.20
			-	0,20
	All BR 2-cylinder standard classes (average value for seven classes):		-	0,21
	Representative pre-nationalization British locos:		-	0,24
	Representative German standard locos: Representative modern American-built locos:		_	0,30 0,23
	representative modern American-built locos.		_	0,23

Item No.	Item	Unit	Amount	
36	From [35], a realistic starting coefficient of adhesion for the Class 5AT, all			
27	possible adhesion improvements being incorporated, is (see [49]):	-	0,25	
37	For a 2-cylinder engine, typical ratio of peak: mean <u>starting</u> tractive effort ^[23] =	-	1,25	
38	Peak coefficient of adhesion required to prevent 'quarter slip' = [36] x [37]:	-	0,31	
39	The maximum available starting coefficient of adhesion may be taken as			
	[Calculations 1.1. Fig. 1.1.2]: Dry rail:		0,34	
	Wet rail:	_	0,34	
	A figure for sanded wet rail is deduced as: ^[24]	_	0,375	
	As the figures for dry rail and sanded wet rail are > [38] the Class 5AT's full		-,	
	starting tractive effort should be useable with minimal slipping, provided			
	good (air) sanding is fitted.			
40	Nominal wheel rim tractive effort based on adhesion = [9] x [36]:	ton	15,0	
		kN	147	
41	With the usual notation, the tractive effort for a 2-cyl. locomotive is:			
	T.E. = $(k \times P \times n \times (d^2 - d_1^2) \times s) \div (2 \times D)$			
	T.E. = $[40] = 147 \text{ kN}$, $P = [29] = 2100 \text{ kPa}$, $P = [30] = 2$,			
42	s = [31] = 800 mm, D = [22] = 1 880 mm			
42	The factor k allows for less than 100% cut off being available and for frictional losses from the pistons to coupled wheels. For the Class 5AT (fully			
	roller bearing equipped and with state of the art tribological design and			
	lubrication) the starting transmission efficiency (= wheel rim work /			
	indicated cylinder work) is taken as: ^[1]	-	0,93	
43	The ratio of mean effective pressure (m.e.p.): boiler pressure at starting		0,20	
	depends largely on the maximum cut-off. For easy starting of the 2-cyl.			
	Class 5AT this is made (cf. BR 5MT = 78%):	%	75	
44	At a cut off = [43] the ratio of m.e.p.: boiler pressure at starting is deduced			
	from SAR 25NC and 26 Class starting indicator diagrams made at 80% and	-	0,90	
	65% cut off respectively: ^[2]			
45	Factor k in equation $[41] = [42] \times [44]$:	-	0,84	
4.5	(generally accepted value with 80% cut-off = 0,85)			
46	d_1 = piston rod and piston tail rod outside diameter:	mm	90	
47	(BR 5MT = 3½" = 88,9 mm)		452	
47	Substituting known data into equation [41], cylinder diameter, d: This is rounded down to:	mm mm	452 450	
	This is founded down to.	in	17,7	
48	Based on [47] nominal wheel rim tractive effort from equation [41]:	kN	146	
10	(BR Class 5MT = 116 kN). See also item [169]	lbf	32 830	
49	Based on [48] nominal coefficient of adhesion = [48] \div [9]:	-	0,248	
50	Net piston face area (front and back) = $\pi/4$ x ($[47]^2 - [46]^2$):	m^2	0,153	
51	Nominal maximum piston thrust, front and back = $[29]$ x $[50]$:	kN	320,6	
	(BR Class $5MT = 283.7 \text{ kN}$)	lbf	72 098	
52	Stroke : diameter ratio = $[31] \div [47]$:	-	1,78	
	([52] is high for good cylinder efficiency, BR Class 5MT = 1,47)			
53	Starting indicated tractive effort = $[48] \div [42]$:	kN	157	
54	Ratio of indicated tractive effort at [1] and [2]: starting indicated tractive			
	effort = $[18] \div [53]$:	-	0,48	
55	Corresponding ratio at maximum power for SAR 26 Class No. 3450 at [23]:		0.1-	
	Actual figure from test data:	-	0,63	
	Estimated figure if 3450 had a maximum cut-off = [43]:	-	0,59	
56	As these figures are > [54] the Class 5AT figure is considered to be realistic.			
56	Approximate initial estimation of cut-off required at [17] and [2] is made by deduction from data on SAR 26 Class No. 3450. If maximum cut-off of			
	3450 = [43] its starting indicated t. e. would have been approximately:	kN	245,0	
57	[54] x [56] =	kN	117,6	
7/		177 4	111,0	
57 58	Speed of 3450 at [23] with coupled wheel tyre diameter = $[1.1. (3)]$:	km/h	89,9	

Item No.	Item	U	nit	Amount
60	At [58] and [59] cut-off is: ^[3]		%	25
	See item [74] for a more accurate assessment of the required cut-off on the			
	Class 5AT at [2] and [17].			
61	m.e.p. at [17] and [2] = [17] \div ([50] x [31] x 2 x [30] x [23]):	k	Pa	917
62	[61] ÷ [29] =			0,44
63	Tentative Diameter of piston valves (2 valves per cylinder):	mm		<u>175</u> (350)
	This dimension may depend on clearance with the moving structure	in		<u>6,9</u> (13,8)
	gauge, and The requirement for minimum cylinder clearance volume		١.	(figs. in
	(item [67]) will probably necessitates the use of two piston valves per			ackets for 1
	cylinder (as for the inside cylinder of the SNCF 242A-1 4-8-4), each 175 mm nominal diameter.		Và	alve/cylinde r)
64	Tentative Piston valve steam lap:	mm /	in	65 / 2,56
65	Ratio of valve diameter x lap: cylinder diameter ² = $2 \times [63] \times [64] \div [47]^2$:	111111 /	111	0,112
0.5	(cf.: value for SAR 26 Class No. $3450 = 0.046$ & for BR Class 5MT = 0.05	1)	-	0,112
	Note from Wardale Oct 2006: This is just a measure of internal streamlining that is given here to show superiority over other designs and has no further			
				10 (10)
66	Tentative Piston valve exhaust lap:		nm	<u>18</u> (10)
67	Target maximum cylinder clearance volume as % of piston swept volume:		0/	(0) / (9)
	Single valves / double valves: Actual value, double valves:		% ~	(9) / (8) 10,6
68	Indicated work done per piston stroke at [17] and [2] = [17] \div (4 x [23]):		% kJ	112,3
69	Piston swept volume per cylinder end = $[31]$ x $[50]$:		n ³	0,122
70	Estimated boiler - steam chest pressure drop at [17] and [2]:		Pa	61
70	(2,9% (4,8%) of rated boiler pressure)	K	1 a	(100)
71	Estimated steam chest (gauge) pressure at [17], [2] and [29] = [29] – [70]:	k	Pa	2 039
7.1	Estimated steam enest (gaage) pressure at [17], [2] and [27] = [27] = [70].	,	1 u	$(2\ 000)$
72	Estimated cylinder (gauge) back pressure at [17] and [2] ≈	k	Pa	50
	Note from Wardale Oct 2006: Initially an estimate based on experience. It			
	was confirmed with acceptable accuracy in FDC 12 items [282] to [286]. If			
	fact pressure slightly <50kPa – i.e. error on safe side.			
73	Required inlet steam temperature at steam chest at [17] and [2]:	(C C	450
74	From the estimated indicator diagram at [17] and [2] (see items [225] –			450
, .	[244] and Fig. 1.3.1.F.) the cut-off required to give work per stroke = [68]	ıt		
	a speed = [2] is (\approx item [60]):		%	<u>25,5</u>
	This is a good figure, well in the zone of high cylinder efficiency, and			(26)
	confirms the suitability of the cylinder dimensions for the required power			
	output at speed $= [2]$.			
75	Adiabatic steam flow to the cylinders per stroke (see items [249] – [253]):	kg	0,	<u>201</u> (0,204)
76	Adiabatic heat drop of steam in cylinders = $[68] \div [75]$:	kJ/kg	_	<u>559</u> (550)
77	Inlet steam enthalpy at [71] and [73] from h – s chart:	kJ/kg		<u>355</u> (3 356)
78	Exhaust steam enthalpy = $[77] - [76]$:	kJ/kg	2	<u>796</u> (2 806)
79	Exhaust steam temperature at [72] and [78] from h – s chart:	°C		<u>162</u> (167)
80	To allow for heat transfer to the cylinder walls during steam admission (i.e.			
	add the 'missing quantity') item [75] is increased by 5% to:]]	κg	0,211
	The low value of the 'missing quantity' is a result of using all practical			(0,214)
	features to reduce it, such as very high superheat, long stroke: diameter			
	ratio, optimum cylinder insulation, high rotational speed at normal train speed, low clearance volume, special engine component design, etc.			
81		cg/s	1/	49 (4,55)
01		kg/s kg/h		19 (4,33) <u>48</u> (16 393)
		b/h		06 (36 146)
		g/h		<u>00</u> (16 400)
82	Actual specific work done by steam in cylinders = $[68] \div [80]$:		/kg	<u>532</u> (525)
83	Isentropic heat drop from [71] and [73] to [72] from h – s chart :		/kg	<u>655</u> (650)
84	Cylinder isentropic efficiency at [2] and [74] = [82] ÷ [83]:		%	81
	This is not the maximum figure, which will occur at shorter cut-off than ite	m		

	[74]. (cf. BR 8P Class 4-6-2 No. 71000 = 86% at minimum s.s.c.)			
85	Indicated s.s.c. (based on cylinder steam flow) at $[17]$, $[2]$ & $[74]$ = $1/[3]$	82]:	kg/MJ	1,88
	This very low figure for such a high power is a consequence of the high-		J	(1,90)
	efficiency front end and high superheat (cf. minimum indicated s.s.c. are	e: 1	lb/hp-h	<u>11,1</u>
	BR 8P Class 3-cyl. simple 4-6-2 No. 71000 = 12,2 lb/hp-h, SNCF 141P			(11,2)
	Class 4-cyl. compound 2-8-2 = 11,2 lb/hp-h).			
Item No.	Item		Unit	Amount
86	Leakage steam upstream of the cylinders: experience with SAR 26 Class	s no.	1 /1	01 (00)
07	$3450^{[4]}$ gives total leakage past the piston valve rings = 0,5% of [81]:	1 . /1.	kg/h	<u>81 (82)</u>
87	Superheated steam flow = [81] + [86]:	kg/h	16 28	<u>1</u> (16 482)
88	In addition to the cylinder steam, steam is (typically) required for some/stable fallowing when the learnesting is under power (* shows that or house)			
	the following when the locomotive is under power (* shows that exhaus steam from these auxiliaries may be piped back to the tender tank, totall:			
	$\approx 40\%$ of the total normal auxiliary steam consumption with oil firing):	ing		
	(a) Air compressor* (for brakes, air sanding, air-controlled auxiliaries) of	or		
	vacuum brake ejector.			
	(b) Mechanical stoker motor* and distributing jets (coal firing) or oil			
	heating* (if required) and atomising (oil firing).			
	(c) Boiler feed pump (s) .*			
	(d) Turbo generator(s).*			
	(e) Cylinder oil heating and (optional) atomising.			
	(f) Cab heating (probably not required for 5AT under UK conditions).*			
	(g) Steam heating of coaching stock.			
	(h) Whistle. (+ blower and drifting steam when not under power) For the purpose of these calculations it is assumed the locomotive is fire	d		
	with gas oil (no oil heating required) and works electrically heated/air co			
	stock: the sum of this auxiliary steam as a percentage of [87] is taken as:		%	4
89	Auxiliary steam at [1] and [2] = $[87]$ x $[88]$:		kg/h	651 (659)
90	Total steam generated by the boiler at $[1]$ and $[2] = [87] + [89]$:	kg/h		2 (17 141)
	(See item [99] for equivalent evaporation.)	lb/h		<u>5</u> (37 796)
	This is rounded up to:	kg/h		<u>0</u> (17 150)
91	The saturated/superheated fractions of the auxiliary steam will be decide			
	the detail design stage. For the present calculation purposes all auxiliary			
	steam is assumed to be dry saturated at pressure = [29] (see [11.1.(228)]			• 664
0.2	enthalpy is:		kJ/kg	2 801
92	Equivalent enthalpy of superheated steam leaving superheater ≈ [77]:	kJ/l	$xg \mid 33$	<u>555</u> (3 356)
93	Saturation temperature corresponding to [72] (note: exhaust steam still h	nas	90	110
0.4	some superheat, see item [79]):		°C	112
94	Feedwater temperature at inlet to boiler, after preheating in a surface type			
	exhaust steam feedwater heater (with average (small) fouling deposits of surfaces):	u II.t.	C	105
	Note from Wardale Oct 2006: Initial estimate from experience but of co			105 110,5 with
	it's later calculated in FDC 9 (and air heater temp in FDC 10).	, ui se		elean h.t.
	and an incase temp in 1 De 10).			surfaces)
95	Feedwater enthalpy at [94]: kJ/kg 440 (≈ 4	63 with a		surfaces)
96	Total heat transferred to the steam leaving the boiler at [1] and [2]	777111		
	$= [87] \times ([92] - [95]) + [89] \times ([91] - [95])$:	GJ/h	49.	<u>0</u> (49,6)
97	Heat given to cylinder steam by fuel = [77] – [95]:	kJ/kg		5 (2 916)
98	Cylinder thermal efficiency based on $[97] = [82] \div [97]$:	%		3 (18,0)
99	Equivalent evaporation at [1] and [2] = [96] ÷ 2 256,7 kJ/kg:	kg/h		1 (21 980)
	Note from Wardale Oct 2006: 2256.7 = the enthalpy of vaporization			
	(water – steam) from steam tables at 100°C and 101.325 kPa pressure.			
	"Equivalent evaporation" refers to these conditions and is a means to			
	relate all vaporizations to constant conditions for comparison purposes			
	– i.e. to cancel out different boiler pressures and different superheat			
	temperatures.			
100	The combustion air is to be preheated by exhaust steam: required air		0.0	400
10:	temperature ≈ (see item [186]):	. 14	°C	100
101	Probable boiler absorption efficiency at [90] without combustion air pre	-heating ^t	^{9]} : %	80

121	(steam assumed to leave heat exchanger as saturated water, $h = 467 \text{ kJ/kg}$) Temperature rise of the air passing through the heater = [100] – [120]:	deg. C	85
	$m_s \times ([78] - 467kJ/kg) = m_a \times \Delta h_a$: assume average ambient air temperature =	°C	15
120	Heat balance for the combustion air preheater is:		(
119	Fraction of cylinder exhaust steam going to feedwater heater = $[118] \div [81]$:	%	15,8 (16,0)
110	Substituting known data into equation [115]: $m_s \times ([78] - [115]) = [90] \times ([95](463 \text{ kJ/kg}) - [117])$ from which $m_s =$	kg/h	2 566 (2 611)
117 118	Tender water enthalpy at [116]: Substituting known data into equation [115]:		88,4 (83,9) 2 566
117	create a 'hot well'.)	1cI/lca	99 4 (92 0)
	(This temperature will may be higher if the tender tank is partitioned to		(20)
	by the condensate and auxiliary exhausts fed back to the tender) \approx	°C	<u>21</u>
116	Average tender water temperature, assumed (with an allowance for warming		
	[m = mass flow rate; Δh = enthalpy change; s = steam; w = water.]		
	pressure = [72] $\underline{\text{and}} \approx 75 {}^{\circ}\text{C}$, condensate enthalpy \approx		(467)
	$m_s \; x \; \Delta h_s = m_w \; x \; \Delta h_w$: presuming steam leaves heater as saturated water at	kJ/kg	<u>314</u>
115	The feedwater heater heat balance is, with the usual notation:		
	of 17,0 indicated kW per ton of engine weight, gave 6,8%.		
	drawbar thermal efficiency of 7,7%, and the BR Class 5MT, at its maximum		
	locomotives in former times, the BR Class 7MT 4-6-2's at maximum evaporation, generating 17,3 indicated kW per ton of engine weight, gave a		
	itself. By comparison with the best level achieved with simple expansion		
	[20] and trailing a large tender of the same nominal weight as the engine		
	This is a very high figure when generating a specific power as high as item		(11,1)
	power = $[1] \div [107]$:	%	<u>11,4</u>
114	Overall thermal efficiency of locomotive referred to maximum drawbar		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	(Maximum figure for SAR 26 Class No. $3450 = 13,1\%^{[6]}$)	, ,	(13,9)
113	maximum drawbar power = $[17] \div [107]$:	%	14,3
113	Overall thermal efficiency of locomotive referred to the indicated output at		(201)
112	Atomising steam flow = $[110]$ x $[111]$: Note: this is 43% of the estimated auxiliary steam production item [89].	kg/h	(287)
112	Assuming average of two figures, it is:		0,2
	Claimed figure for 'Sonvico' system:	"	0,1
	From Kempe's Engineers Year-book, 1985, p. F2-35:	kg/kg	0,3
	atomising steam required per unit of fuel fired:		
111	Assuming burner is of the high pressure atomising type, (superheated)		
110			400 (1 434)
	diesel fuel / gas oil the most practical fuel, of lower calorific value ^[28] :	kcal/kg	10 240
103	preferred (see item [192] etc. for coal firing). Its ready availability makes	MJ/kg	42,9
109	Fuel: for various technical, practical and environmental reasons, oil firing is		
	This high efficiency at such a high boiler load is primarily due to the high combustion efficiency possible with modern oil firing technology.		
108	Boiler efficiency at $[90] = [96] \div [107] = [102] \times [106]$:	%	<u>82</u> (81)
107	Heat in fuel fired = [103] ÷ [106]:		<u>59,8</u> (61,5)
107	claimed for the Swiss 'Sonvico' system.)	GT.	70.0 (61.7)
	(99,5% at relatively low value of heat release rate per unit firebox volume is		
106	Combustion efficiency with "state of the art" oil firing:	%	95
Item No.	Item	Unit	Amount
	From Chapelon ^[25] it is deduced that a high oil burning rate = 15 GJ/m^3 -h.		
	SAR 3450 at maximum measured firing rate = 12.6 GJ/m^3 -h		
	LMR Class 2 2-6-0 at maximum evaporation $\approx 9.4 \text{ GJ/m}^3$ -h		(12,2)
103	cf. BR Class 5MT at maximum evaporation $\approx 9.4 \text{ GJ/m}^3$ -h	O3/111 -11	(12,2)
104 105	Firebox volume (same as BR Class 5MT for the purpose of this calculation): Heat release rate per unit firebox volume = $[103] \div [104]$:	$\frac{\text{m}^3}{\text{GJ/m}^3-\text{h}}$	4,8 11,8
103	Heat release rate in firebox at [1] and [2] = [96] ÷ [102]:	GJ/h m ³	<u>56,8</u> (58,4)
102	increased to (see item [186]):	%	86,3 (85)
	economiser at front of boiler barrel) boiler absorption efficiency may be		06.2 (0.5)
	bundle/superheater design, good insulation, preheater Chapelon-type		
102	Due to item [100] and other factors (low excess air, optimum tube		

122	Specific heat at constant pressure (c_p) for air = kJ	/kg deg.K	1,005
123	$\Delta h_a = [121] \times [122]$:	kJ/kg	85,4
124	Stoichiometric air:fuel ratio by weight, diesel fuel/gas oil (see item [255]):	kg/kg	14,5 : 1
125	Excess air coefficient at [90] and [110], assumed:	-	1,3
	Note: this is a 'safe' value, and the combustion equipment must be designed		, -
	to allow adequately complete combustion with the minimum of excess air.		
126	Combustion air supply, based on fuel fired = [110] x [124] x [125]: kg/	/h <u>26 39</u>	<u>00</u> (27 031)
127	Substituting known data into equation [120]:	kg/h	<u>968</u>
	$m_s \times ([78] - 467kJ/kg) = [126] \times [123]$ from which $m_s =$		(987)
128	Fraction of cylinder exhaust steam to combustion air preheater = $[127] \div [81]$		6,0
129	Total exhaust steam to the feedwater & combustion air heaters = [118] + [127]:	kg/h	3 534 (3 598)
Item No.	Item	Unit	Amount
130	Total exhaust steam to the feedwater & combustion air heaters as a fraction	%	21,8
	of the cylinder steam flow = $[129] \div [81] = [119] + [128]$:	, ,	(22,0)
131	% of cylinder steam flow going to blast nozzles = 100- [130]:	%	78,2 (78,0)
132	Steam to blast nozzles = $[81] - [129] = [81] \times [131]$: kg/		66 (12 802)
133	Ratio of combustion gas flow: blast nozzle steam flow	kg/kg	<u>2,22 : 1</u>
134	= ([110] + [112] + [126]) ÷ [132]: Total condensate piped to the tender from feedwater heater and auxiliaries as	%	(2,25 : 1) <u>16,6</u>
134	a fraction of the total evaporation $\approx ([118] + 0.4 \times [89]) \div [90]$:	70	(16,8)
135	For every unit of tender water evaporated in the boiler, the amount of raw	%	83,4
133	water is (100 – [134]):	70	(83,2)
136	Split of supplies: item [12] can be split into fuel and water in any ratio to	1	
	suit operating conditions, but generally it is now at least as easy to take oil		
	fuel as to take water. In UK steam times, maximum coal supply for the	Imp. ton	10
	longest duties was (for LMR and BR Standard Class 8 4-6-2's):	m. ton	10,2
137	Typical lcv of good former British locomotive coal ≈	MJ/kg	32
138	Tender energy capacity = [136] x [137]:	GJ	326
139	Corresponding fuel supply of Class $5AT = [138] \div [109]$:	ton	7,6
1.10	This is rounded down to:	ton	7
140	Autonomy at [1] and [2] based on fuel capacity = $[139] \div [110]$:	h	<u>5,0</u> (4,88)
141	Range at [1] and [2] based on fuel capacity = [2] x [140]: This is well beyond the distance that the loco would be expected to cover at	km	<u>565</u> (552)
	constant maximum drawbar power without refuelling, therefore giving a	mile	353 353
	high fuel capacity safety margin for the expected duty (see also item [151]).	mine	(345)
142		ton or m ³	46,3
143	Autonomy at [1] and [2] based on water capacity = $[142] \div ([90] \times [135])$:		3,27 (3,24)
144	Range at [1] and [2] based on water capacity = [2] \times [143]:	km	369
	This is well beyond the distance that the loco. would be expected to cover at		(367)
	constant maximum drawbar power, so that in practice the range between	mile	<u>231</u>
	water replenishments would normally be greater than as given (an exception		(230)
	is if long periods of high power were required at lower speed going upgrade).		
145	Increase in range based on water capacity due to returning auxiliary exhausts	%	19,9 (20,2)
116	& condensate from feedwater heater to tender = ((100 ÷ [135]) – 1):		(20,2)
146	Representative load factor (defined as ratio of (distance) average cylinder power: full rated cylinder power) in normal service \approx	_	0,5
147	Specific fuel and water consumptions will be fairly flat functions of power	1	,
	under typical charter train operating conditions, except for relatively high		
	values during periods of acceleration. Fuel and water consumption rates at		
	load factor = [146], as fractions of the full load consumptions, are therefore		
	conservatively estimated as:	-	0,6
148	Under representative average service conditions, autonomy based on fuel	h	8,33 (8.13)
140	capacity = [140] ÷ [147]:	h	(8,13)
149	Under representative average service conditions, autonomy based on water capacity = [143] ÷ [147]:	h	5,45 5,40
150	With a maximum operating speed = [26] the average train speed can	km/h	113
	conservatively be assumed = [2]:	mph	71
-	•		

151	Under representative average service conditions, range based on fuel capacity = [148] x [150]:	say 94	(919) 0 (920) 590 (575)
152	Under representative average service conditions, range based on water capacity = [149] x [150]: If extra range is required, a simple water tank car could be added behind the tender and/or part of any support vehicle (if required for providing electrical power for train heating or air con. etc.) could be fitted with an auxiliary water tank.		615 (610) 385 (380)
153	Relative density of diesel fuel / gas oil =	-	0,83
154	Volume of tender fuel tank (for gas oil) = [139] ÷ [153]:	m^3	8,4
155	Approximate cross sectional area of tender fuel tank:	m ²	1,4
Item No.	Item	Unit	Amount
156	Approximate length of tender fuel tank = $[154] \div [155]$:	m	6,0
157	Approximate volume of tender water tank well section between bogies:	m ³	5,5
158	Approximate cross sectional area of tender water tank, excluding well section	on: m ²	4,8
159	Approximate length of tender water tank = ([142] – [157]) ÷ [158]: To allow for volume occupied by internal tank bulkheads, etc., this is	m	8,5
160	increased to: Approximate overall length of engine and tender over buffers:	m	9,0
100	(cf. LNER A1 Class = 22,2 m, LMS 'Coronation' Class = 22,5 m, LMS 'Princess Royal' Class = 22,7 m)	m ft	22,1 72,5
161	Ratio of length of engine : length of tender (engine length same as for BR Class 5MT):	-	1,26 : 1
162	Approximate overall wheelbase of engine and tender:	m ft	18,9 62,0
163	Summary of design maximum axle loads (static, excluding any dynamic augment, and based on 20 ton total leading bogie load): (a) per axle: (b) per metre of engine rigid wheelbase: (c) per metre of total wheelbase (engine and tender): (d) per metre of total length over buffers:	ton ton/m ton/m ton/m	20,0 12,7 8,5
164	According to Koffman ^[7] the specific starting resistance on level tangent track for roller bearing stock is:	kg/ton N/ton	7,2 7 69
165	Applying this to the average tender mass in service gives starting resistance of tender = $[15] \times [164]$:		4,3
166	Specific starting resistance of engine will be greater than [164] on account of more machinery to set in motion: it is taken as:		100
167	Starting resistance of engine = [6] x [166]:	kN	8,0
168	Total starting resistance of engine and tender = $[165] + [167]$:	kN	12,3
169	Starting drawbar tractive effort on level tangent track = $[48] - [168]$: This is rounded up to:	kN kN lbf	133,7 134 30 132
170	Starting drawbar efficiency (= e. db. t.e. ÷ wheel rim t.e.) = [169] ÷ [48]: This is rather low for a roller bearing equipped locomotive, probably partly because item [166] may be less than assumed, but also reflecting the large tender mass for the locomotive's nominal tractive effort.	%	92
<u>Items [171]</u>	applementary calculations to check the assumed boiler absorption efficiency item [102] is taken a lare however reworked for the sake of completeness: for Fig. 1.3.2. refer to complete the sake of completeness.	as [11.3.(779)]. Items
171	Boiler absorption efficiency = (heat transferred to water/steam in boiler and superheater ÷ heat released in firebox).		
172	Heat transferred through heat transfer surfaces = (heat transferred to water/steam in boiler and superheater + boiler radiation loss). The radiation loss from a boiler with average quality of insulation as a % of the energy in the fuel burnt at full load (boiler stress $\approx 100 \text{ kg/m}^2$ -h for the boilers concerned) ^[8] \approx		3
173	For a heavily insulated modest-size boiler at very high boiler stress	70	3
1/3	1 of a nearity insulated modest-size botter at very light botter sitess		

	($\approx 113 \text{ (112) kg/m}^2$ -h at [90] assuming for the purpose of these calculations		
	the same total evaporative heating surface area as the BR 5MT (153,3 m ²))		
	assume this is reduced to:	%	2
174	Heat lost by radiation \approx [103] x [173]:	GJ/h	<u>1,14</u> (1,2)
175	Heat transferred through boiler and superheater heat transfer surfaces =	GJ/h	50,14
	$([96] + [174]) = (([102] \times [103]) + [174]):$		(50,8)
176	$[175] = \{ \text{heat entering the firebox} + \text{heat generated by combustion} - \text{heat lo} \}$	st in smokel	oox gases}
177	Heat entering the firebox = $\{\text{heat in combustion air} + \text{heat in atomizing}\}$		
	steam + heat in fuel}. The last is negligible and is ignored (this gives a		
	conservative (safe) result to these calculations). From combustion gas	kcal/N*m ³	
178	enthalpy-temperature (h-t) chart [Fig. 1.3.2.] enthalpy of air at [100]:	kJ/kg GJ/h	100 2,64 (2,72)
Item No.	Heat in combustion air = [126] x [177]:	Unit	Amount
179	Item For purposes of this check atomizing steam is assumed to be superheated at	Unit	Amount
179	temperature = [73] and its enthalpy is taken as [77]. Heat in atomizing steam	n GJ/h	0,94
	is then $[77] \times [112] =$	03/11	(0,96)
180	From equation [176] heat lost in smokebox gases	GJ/h	10,24
	= ([178] + [179]) + [103] – [175] =		(11,28)
181		g/h 28 0	70 (28 752)
182	Smokebox gas enthalpy = $[180] \div [181]$:	kJ/kg	<u>365</u> (392)
183	Smokebox gas density at [125] ≈	kg/N*n	n ³ 1,3
184	Smokebox gas enthalpy = [182] x [183]:	kJ/N*m ³	<u>475</u> (510)
		kcal/N*m ³	<u>114</u> (122)
185	From combustion gas enthalpy-temperature chart [Fig. 1.3.2.] at [184], [109] °C	<u>335</u>
	and [267], temperature of gases leaving the boiler tube bundle is:		(357)
106	[185] agrees with the calculated figure [11.3.(777)].	70191 : 1	00 100
186	For SAR loco No. 3450 smokebox gas temperature at steam temperature = [°C 405
	This is significantly > [185], which however should be possible with a steam temperature = [73] by careful design of the superheater. If so, the boiler absorber		
	efficiency estimate, item [102], is shown to be acceptable by items [175], [1]		
	[180] & [185]. However the importance of optimising all items affecting box		
	absorption efficiency is indicated (especially the combustion equipment, to		
	excess air, item [125] being considered a maximum figure at full boiler load		
	also the need for a combustion air supply temperature of at least 100 °C, iter		
187	If no air preheater were fitted and combustion air entered at 15 °C (item	kcal/N*m	
100	[120]) enthalpy of combustion air entering firebox (from Fig. 1.3.2.) =	kJ/kg	16,2
188	Heat in combustion air = $[126] \times [187]$:		0,43 (0,44)
189	Heat lost in smokebox gases = ([188] + [179]) + [103] - [175] =	GJ/h	<u>8,0</u> (9,0)
190	Smokebox gas enthalpy = $[189] \div [181]$:	kJ/kg kcal/N*m ³	286 (313) 89 (97)
191	From combustion gas enthalpy-temperature chart [Fig.1.3.2.] at [190], [109]		<u>263</u>
171	and [267], temperature of gases leaving the boiler tube bundle would be:		(283)
	This is considered unrealistic for a steam temperature = [73], therefore the		(200)
	necessity of a combustion air preheater is confirmed.		
	Supplementary calculations for coal firing (GPCS = Gas Producer Combus	stion System	1)
192	L.C.V. of locomotive coal now available, assumed:	MJ/kg	30
193	Coal fully burned ≈ [103] ÷ [192] (note: is approximate as some constituents	s kg/h	<u>1 893</u>
	of coal burn preferentially to others):		(1 947)
194	Ash content of coal of L.C.V. = [192] ≈	%	8
195	Coal gasified during combustion = [193] x (1-[194]):		<u>742</u> (1 791)
196	Firegrate area (here assumed same as BR Class 5MT, although a larger	\int_{2}^{∞}	28,7
107	(longer) grate will be fitted if possible):	$\frac{1}{1}$ $\frac{m^2}{1}$	2,67
197	Specific burning rate = $[193] \div [196]$:	kg/m ² -h	<u>709</u> (729)
198	Maximum sustained specific burning rate, SAR 26 Class No. 3450 ^[10] ≈	$\frac{\text{kg/m}^2\text{-h}}{1 + (-1)^2 + 1}$	638
199	Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[11] ≈	kg/m ² -h	830
200	[198] < [197] < [199]. The burning rate at [90] with coal firing would		
	therefore be near the absolute maximum possible with loco. No. 3450,		
	however the better GPCS conditions on the Class 5AT, allowing a higher		

	2dy/1ry air ratio, favour the possibility of high specific combustion rates.									
201	Stoichiometric air : fuel ratio by weight for co							ks	g/kg	10
202	Combustion air flow = [193] x [201] x [125]:	01			L±7	<u></u>			g/h	24 609
	(c.f. item [126] for oil firing)								0	$(25\ 311)$
203	For the following analysis four levels of prima	ary ai	r flo	w ar	e coi	iside	ed:		•	
	(1) 30% of total combustion air as primary a									
	(2) 40% of total combustion air as primary a									1
	(3) 50% of total combustion air as primary a									
20.4	(4) 100% of total combustion air as primary a		rres			o 'cla				100
204	Primary air as a % of total combustion air:	%	1_		30	-	40	-	50 205	100
205	Primary air flow = [202] x [204]:	kg/	n		3 <u>83</u> 593)	_	0 844 0 124)		305 655)	(25 311)
Item No.	Item			(/.	173)	(1	0 124)		U nit	Amount
(204)	Primary air as a % of total combustion air:		(%	3	0	40		50	100
206	(Average) clinker control steam / kg of 1ry air	r ^[12] :		/kg	0,		0,12		0,12	-
207	Clinker control steam flow = [205] x [206]:			g/h		36	1 181	_	477	0
			•	5	(9)		(1215)		519)	
208	1ry air + clinker control steam	kg/	h	8 2	269	1	1 025	13	782	24 609
	= [205]+[207]:			_ \	504)	(1	1 339)	(14	174)	(25 311)
209	Specific primary air + clinker control steam	kg/	m ² -1		3 09		4 129		162	<u>9 217</u>
	flow through firebed = $[208] \div [196]$:	(3 185) (4 247)					309)	(9 480)		
210	At [209] combustion efficiency (deduced from	n[13]) =	×	%		(83)	<u>77</u> (*		<u>68</u> (66	
211	% free gas flow area through firebed ≈)	25	40	
	(In a truly packed bed, % free gas flow area < 10% ^[14]									
	but the figures here allow for progressive 'unp									
212	the firebed which occurs as the air flow rate in			C	0(00	1.000	\	200	1 400
212	Combustion gas temperature at firebed top ^[15]			3/kg	90	,3	3,6	' 1	4,2	1 400
213	Comb. gas spec. vol. at [212] (taken = that of Combustion gas velocity at top of firebed	air)		/kg n/s		, <u>5</u>	20,6	-	4,2 24,1	30,1
214	= [209] x [213] ÷ [211]:		11	1/8	$\frac{10}{19}$		(21,2)	-	24, <u>1</u> 24,8)	(30,9)
215	Size of coal particles which will be carried of	f	n			6 5,0			6,6	10,0
	firebed at $[214]^{[16]} \approx$				(4		(5,3)	((7,1)	(10,7)
216	Particle mass \propto (linear dimension) ³ . Therefor	e				<u>128</u>			<u> 295</u>	<u>1 025</u>
	mass of coal particles carried off firebed as %				(325)	(1 110)			
	that for 30% 1ry air = $([215] \div 4.6 (4.8))^3 \times 100\%$:									
217	This analysis is approximate and assumes eve									
	increase the size of coal particles carried off									
	which can be lifted off the firebed as the 1ry in combustion efficiency ([210]) (judicious of									
	return escaping particles to the fire). Item [21		_				•			
	needed for combustion efficiency with coa									
	'Classical' 100% 1ry air combustion will be									
	limit would prevent it from attaining the requ	iired b	ourn	ing 1	ate.	Give	n the de	eep fir	ebox o	f the Class
	5AT - ideal for the GPCS - near-optimum of									
	kind of (high volatile) coal, so the analysis is									
210	primary air, giving 84% (83%) combustion ef	ncien	суа	it the	DO1	er's i	naxımu		_	
218 219	Specific firing rate = [197] ÷ [210]: Firing rate = [218] x [196]:							kg/m		844 (878) 55 (2.345)
219	Tring rate							kg/h ton/h		55 (2 345) 25 (2,35)
220	Allowable sustained hand firing rate for a sing	gle fir	ema	n in	UK ^[]	7].			o/h	3 000
	[219] is <u>66%</u> (72%) higher than [220], therefore						S		g/h	1 360
	obligatory for obtaining full rated boiler output								_	-
221	To give same range as with oil firing, bunker		ity =	= [14	0] x	[219]	 :	t	on	11,25
	This is 61% (64%) > item [139] and would re									(11,5)
	approximately 9% (10%) for a total supplies v									
	coal fuel a closer relationship between the ran					ind o	n water			
222	supplies than is the case with oil firing may be	e adva	ınta	geou	S.			1	-/1c	100
222	Mechanical stoker steam jet consumption ≈							K	g/h	100

222	Total compustion are flow through the hoiler types -		
223	Total combustion gas flow through the boiler tubes = [195] + [202] + [207] + [222] (c.f. item [181] for oil firing): kg	g/h 27.3	<u>837</u> (28 113)
224	Summary. With coal as fuel the rated boiler output item [90] should be re		
224	combustion efficiency than assumed for oil firing, compare items [106] and		
	consumption will slightly reduce the operating range for a given total qua		
	combustion efficiency of 84% (83%) (item [210]) the char carry-over will		
	require a self-cleaning and spark –arresting smokebox. However the com		
	rise by more than it does with oil firing as steam demand decreases, the		
	consumption at part load to that at full load may be better than for oil firing		
	under average service conditions the difference in performance between t	he two fue	els would be
	expected to be less than indicated by these calculations. Better performance		
	also be possible if coal of higher calorific value than given in item [192] can		
Item No.	Item	Unit	Amount
	mentary calculations for obtaining the estimated indicator diagram at [2]	and [17], I	Fig. 1.3.1.
225	Known data is;	1.D.	020 (2.000)
	Steam chest pressure (assumed constant during cycle) (item [71]):		2 039 (2 000)
	Exhaust steam pressure (item [72]): Piston swept volume, each end of cylinder (item [69]):	kPa m ³	50 0,122
	Cylinder clearance volume, assuming twin piston valves (item [67]):	%	0,122 10,6 (8)
226	Indicated work per piston stroke (item [68]) =	kJ	112,3
227	The following data required for drawing the estimated indicator diagram is	KJ	112,3
22,	deduced from indicator diagrams made on SAR 26 Class locomotive No.		
	3450. The speed of this locomotive at coupled wheel rotational speed =		
	[23] is 89,9 km/h (item [58]) and the nearest diagram to this speed and a		
	cut-off = 25% item [60] is at 84 km/h and 28% cut-off $^{[18]}$. For this		
	diagram, ΔP at point of cut-off, as a % of the peak cylinder pressure, is:	%	16
228	ΔP at point of cut-off is dependent on factors such as the mean inlet port		
	opening relative to the cylinder volume, cylinder wall effects, and		
	particularly the speed of valve closure, which are more optimal on the		
	5AT. Therefore ΔP for the 5AT is taken as:	%	12
220	Note: the 5AT peak cylinder pressure is assumed = steam chest pressure	1.0	704 (1.760)
229	Cylinder pressure at cut-off = $[71] \times (1 - [228])$:	kPa <u>1</u>	794 (1 760)
230	From the 3450 diagrams, peak cylinder pressure is generally reached after dead centre. For the diagram concerned, the piston position at peak		
	pressure as a % of the stroke, ΔS , is:	%	7
231	Due to various beneficial factors on the 5AT (e.g. longer lead, lower	70	/
231	clearance volume and reduced wall effects) ΔS is taken as:	%	2
232	For 3450, the maximum pressure reached at dead centre as a % of the peak	,,,	_
	cylinder pressure (ideally 100%) is:	%	64
233	Due to the various beneficial factors on the 5AT given in item [231],		
	[232] is conservatively increased to:	%	80
234	Maximum pressure at dead centre = [71] x [233]:	kPa <u>1</u>	631 (1 600)
235	Caprotti gives the index of expansion as 1,2 ^[19] and Porta as 'smaller than ac	diabatic'[1,	,3] ^[20] .
	However due to the high superheat [73] and all cylinder design factors aimed		
	expansion will be close to isentropic and may be assumed to follow the curr		
	is absolute pressure. This is confirmed by expansion lines of high-speed dia	grams take	en on 3450.
236	For the 3450 diagram, % of the piston stroke at which pressure departs	0.4	0.4
227	from the expansion line at the start of release ≈	%	84
237	Due to longer exhaust lap, [236] is increased for the 5AT to:	%	85
	(Actual release at 25% cut-off = 80,4%, but point of inflexure in pressure line will be later in stroke.)		
238			
238	For the 3450 diagram, gauge pressure at the end of the stroke as a % of the gauge back pressure:	%	200
239	[238] is retained for the 5AT: pressure at end of stroke = [72] x [238]:	kPa	100
240	For the 3450 diagram, % of the return stroke at which pressure falls to the	κια	100
210	back pressure line (assumed same for the 5AT):	%	7
241	For the 3450 diagram, % of the return stroke at the apparent compression	1	-
	point, i.e. the point at which the valve commences to close to exhaust and		
	where the exhaust pressure starts to rise above the back pressure line:	%	76
		•	

242		exhaust lap [241 ession at 25% co				to:		%	<u>60</u> (75)
243	The compressi	on is effectively	isentropic	[19][20] i.e.	$pv^{1.3} = k$. Poi	nt [242	l does	not defii	ne the true
2.3	The compression is effectively isentropic, $^{[19][20]}$ i.e. $pv^{1.3} = k$. Point [242] does not define the true start of the compression line $^{[21]}$ but is assumed to do so for the purposes of these calculations (a								
		ion as it reduces			o so for the pur	Poses	1 111000		10115 (W
244		gives all data fo			ed indicator di	agram			
		cut-off. Diagram							
		off, item [60], ui							
		[226]. This dia							
		t-off for a cylin						%	25,5 (26)
245		1.F. the gauge co							
	valve opens to	lead steam \approx	-	•				kPa	<u>940</u> (800)
Item No.			Item					Unit	Amount
246	Assuming isen	tropic compress	ion from t	ne back pre	essure line at [7	72] and			
	[79], the temperature of the compressed steam at [245], from $h - s$ chart:							°C	<u>410</u> (395)
247	[246] < [73], b	ut in practice th	ere will be	some heat	transfer from	the cyli	nder w	valls to th	ne exhaust
		the temperature							ature at
	the start of con	npression = 190	°C (205°C) or more,	the temperatur	re at [24	45] ≥ [73].	
248	The indicated m.e.p. at [17] and [2] = [68] \div ([31] x [50]):							kPa	917
	Supplement	ary calculation	s for obta	ining the c	ylinder steam	flow, i	item [ˈː	75].	
249	The method of	Porta is used ^[22]	. In the dia	gram Fig.	1.3.1.F. the va	riable i	nlet		
	pressure is sub	stituted by an ed	quivalent n	nean inlet p	ressure giving	equal		kPa	<u>1 920</u>
		equating the hat							(1 880)
250	At [73] and [24	49] the steam sp	ecific volu	me (from s	steam tables) is	s:		m ³ /kg	0,162
									(0,166)
251	Volume at poin	nt (A) Fig. 1.3.1	.F.:				m^3	0,0083	5 (0,0056)
252	Volume at poin	nt (B) Fig. 1.3.1	.F.:				m^3	0,041	1 (0,0395)
253	Mass of steam	admitted per str	oke = ([25]	2] – [251])) ÷ [250]:	<u>.</u>		kg	0,201
	This is the adiabatic quantity, i.e. assuming zero heat transfer to the cylinder						der		(0,204)
	walls. This heat transfer results in a reduction in admission steam								
	temperature and specific volume and hence in a larger amount of steam								
	being admitted (i.e. the so-called 'missing quantity'), and this is allowed for					for			
	by item [80].								
		tary combustio							
254		uses the method							
	of fuel burnt is made, for diesel fuel / gas oil. The following is per 100 kg of oil and is for								
		ly and excludes							
255	Constituent	kg per 100		= kmol			The	oretical a	air
		kg of oil ^[27]	weight		required				
	Carbon	86,3	12	7,19	7,19	= 10,			50,0 kmol
	Hydrogen	13,2	2	6,60	3,30			$0 \times 28,9$	
	Sulphur	0,5	32	0,02	0,02	=		kg air / l	_
256	A . 1	1/1001	1 [105]		$\Sigma = 10,51$	1		tem [124	
256) kmol/100 kg o						0 kg oil	65 51.25
257		$\frac{\text{on air} = [256] \text{ x}}{\text{on air}}$		0.573				0 kg oil	51,35
258		combustion air		25/]:		kr	nol/10	0 kg oil	13,65
259		f combustion (fl				.	1/1 0	0.1 '1	7.10
								0 kg oil	7,19
		(ii) SO_2 (from [255] column 5) = kmol					1101/10		0,02
	(ii) SO ₂ (from					1	201/10	$0 \text{ lea } \sim 1$	3,14
	(ii) SO_2 (from (iii) $O_2 = [258]$	8] - [255] Σ colu					nol/10		
	(ii) SO_2 (from (iii) $O_2 = [258]$ (iv) N_2 (item	8] - [255] Σ colu [257]) =	mn 6 =			kr	nol/10	0 kg oil	51,35
260	(ii) SO_2 (from (iii) $O_2 = [258]$ (iv) N_2 (item (v) H_2O (from (v)	8] - [255] Σ colu [257]) = vm [255] column	mn 6 =			kr kr	nol/10 nol/10	0 kg oil 0 kg oil	51,35 6,60
260	(ii) SO_2 (from (iii) $O_2 = [258]$ (iv) N_2 (item (v) H_2O (from Total of item [2]	8] - [255] Σ colu [257]) = om [255] column [259] =	mn 6 =	_ [250]	2601.	kr kr	nol/10 nol/10	0 kg oil	51,35
260 261	(ii) SO_2 (from the following section (iii) $O_2 = [258]$ (iv) N_2 (item to fix the following section (iv) H_2O (from the following section) G	8] - [255] Σ colu [257]) = vm [255] column	mn 6 =	= [259] ÷ [[260]:	kr kr	nol/10 nol/10 nol/10	0 kg oil 0 kg oil 0 kg oil	51,35 6,60 68,30
	(ii) SO_2 (from the following section of the following section) (iv) SO_2 (from the following section) (iv) SO_2 (from the following section) (iv) SO_2 (8] - [255] Σ colu [257]) = om [255] column [259] =	mn 6 =	= [259] ÷ [260]:	kr kr	mol/10 mol/10 mol/10	0 kg oil 0 kg oil 0 kg oil	51,35 6,60 68,30
	(ii) SO_2 (from (iii) $O_2 = [258]$ (iv) N_2 (item (v) H_2O (from Total of item [2] Combustion gas (i) $CO_2 =$ (ii) $SO_2 =$	8] - [255] Σ colu [257]) = om [255] column [259] =	mn 6 =	= [259] ÷ [260]:	kr kr	mol/10 mol/10 mol/10 %	0 kg oil 0 kg oil 0 kg oil	51,35 6,60 68,30 10,53 0,03
	(ii) SO_2 (from (iii) $O_2 = [258]$ (iv) N_2 (item (v) H_2O (from Total of item [2] Combustion gas (i) $CO_2 =$ (ii) $SO_2 =$ (iii) $O_2 =$	8] - [255] Σ colu [257]) = om [255] column [259] =	mn 6 =	= [259] ÷ [[260]:	kr kr	mol/10 mol/10 mol/10 %	0 kg oil 0 kg oil 0 kg oil	51,35 6,60 68,30 10,53 0,03 4,60
	(ii) SO_2 (from (iii) $O_2 = [258]$ (iv) N_2 (item (v) H_2O (from Total of item [2] Combustion gas (i) $CO_2 =$ (ii) $SO_2 =$	8] - [255] Σ colu [257]) = om [255] column [259] =	mn 6 =	= [259] ÷ [[260]:	kr kr	mol/10 mol/10 mol/10 %	0 kg oil 0 kg oil 0 kg oil	51,35 6,60 68,30 10,53 0,03

262	A4		
262	At excess air = 30% (item [125]), carbon in 100 kmol of dry flue		
	gas = $(100 \div [260]) \times (86,3 \div 12) =$	kmol	10,53
263	Carbon per 100 kg of oil (from [255] column 5) =	kmol	7,19
264	Flue gas produced per 100 kg of oil = $100 \text{ x} ([263] \div [262]) =$		
	[260] =	kmol/100 kg oil	68,3
265	Composition of [264] (final numbers in equations are molecular		
	weights):		
	(i) $CO_2 = [264] \times [261](i) \times 44 = [259](i) \times 44 =$	kg/100 kg oil	316,4
	(ii) SO ₂ = [264] x [261](ii) x 64 = [259](ii) x 64 =	kg/100 kg oil	1,0
	(iii) $O_2 = [264] \times [261](iii) \times 32 = [259](iii) \times 32 =$	kg/100 kg oil	100,5
	(iv) $N_2 = [264] \times [261]$ (iv) $\times 28 = [259]$ (iv) $\times 28 =$	kg/100 kg oil	1 437,8
	(v) $H_2O = [264] \times [261](v) \times 18 = [259](v) \times 18 =$	kg/100 kg oil	118,8
Item No.	Item	Unit	Amount
266	Total of item [265] =	kg/100 kg oil	1 974,5
267	Fraction of CO_2 in combustion gas = [265](i) \div [266]:	%	16,0
	(for use in Fig. 1.3.2.)		
268	Total combustion gas flow, including atomizer steam =		
	$(([266] \div 100) \times [110]) + [112] =$	kg/h	<u>27 923</u>
	This gives good agreement with item [181] (within 0,5%).		$(28\ 601)$
269	Conclusion. The final figures are very close to, and almost always better than, the original		
	estimates. The FDC's are therefore partly based on marginally more stringent data than necessary,		
	but any difference is nevertheless generally within the order of accuracy of the FDC's themselves.		

D. Wardale Inverness 2004-11-13

References

- 1. Wardale D., *The Red Devil and Other Tales from the Age of Steam*, published by the author, Inverness, 1998: page 457 Table 78.
- 2. *Ibid.* pages 254 & 264.
- 3. *Ibid.* page 268, Fig. 83 (extrapolated).
- 4. *Ibid.* page 321.
- 5. *Ibid.* page 294, Fig. 109 & page 457, Table 78.
- 6. *Ibid.* page 277.
- 7. Quayle J. P., Editor, *Kempe's Engineers Year-Book*, 90th Edition, Morgan-Grampian Book Publishing Co. Ltd., London, 1985: page J3/5.
- 8. Wardale D., *The Red Devil and Other Tales from the Age of Steam*, published by the author, Inverness, 1998: page 80, Fig. 21 & page 295, Fig. 110.
- 9. Ibid. page 310, Fig. 131 (best characteristic).
- 10. Ibid. derived from Fig. 109, page 294.
- 11. *Ibid.* derived from Figs. 108 & 109, page 294 and Fig. 111, page 296.
- 12. Ibid. page 287.
- 13. Ibid. deduced from Fig. 27, page 88.
- 14. Ibid. page 302.
- 15. Ibid. page 89.
- 16. Ibid. page 82, Fig. 24.
- 17. Ibid. page 498.
- 18. Ibid. page 259, Fig. 75.
- 19. Phillipson E. A., *Steam Locomotive Design: Data and Formulae*, The Locomotive Publishing Co. Ltd., London, 1936, page 52.
- 20. Porta. L. D., Fundamentals of the Porta Compounding System for Steam Locomotives (unpublished), page 32.
- 21. *Ibid.* page 9-7, Fig. 7.
- 22. Ibid. pages 9-1 & 9-1a, Fig. 1.
- 23. McArd G. W., Problems of Locomotive Torque, The Railway Gazette, February 27, 1953.
- 24. Wardale D., *The Red Devil and Other Tales from the Age of Steam*, published by the author, Inverness, 1998: page 336, Fig. 141.

- 25. Chapelon A., *La Locomotive a Vapeur*, English edition, translated by Carpenter, G. W., Camden Miniature Steam Services, Bath, 2000, page 90.
- 26. Quayle J. P., Editor, *Kempe's Engineers Year-Book*, 90th Edition, Morgan-Grampian Book Publishing Co. Ltd., London, 1985: pages F2/47-48.
- $27.\ \textit{Ibid.}$ page F2/22, Table 20 (average of diesel fuel and gas oil).
- 28. *Ibid.* page F2/22, Table 20.