WARDALE ENGINEERING & ASSOCIATES 7D Reav Street Inverness IV2 3AL Great Britain

CLASS 5AT 4-6-0: FUNDAMENTAL DESIGN CALCULATIONS

1. GENERAL CALCULATIONS.

Note: the general calculations are made for any of the following interesting conditions, as appropriate: starting, maximum drawbar power, maximum indicated power, maximum continuous operating speed and maximum design speed.

1.1. DETERMINATION OF THE TARGET POWER & TRACTIVE EFFORT - SPEED CHARACTERISTICS.

Notes.

- In practice, different locomotives built to similar standards of thermal design tend to give similar levels of 1. maximum specific indicated power (maximum indicated power per unit of engine mass, Ps.ind.max) at any given engine rotational speed, n. Therefore it is reasonable at the outset to base the target performance of the 5AT 4-6-0 on the maximum specific indicated power - engine rotational speed characteristic actually achieved with the South African Railways 26 Class 4-8-4 No. 3450, with due allowances for the superior design of the 5AT.
- The SI system is mostly used. Unless otherwise stated "ton" refers to metric ton of 1000 kg. 2.
- Numbers in square brackets [] in column 2 refer to calculation item numbers in the Fundamental Design 3. Calculations (FDC's): firstly the number identifying the calculations concerned, followed by the item number within those calculations, given in round brackets (), e.g. [1.3.(16)] refers to calculations 1.3. item no. (16). Where only a single number is given within square brackets, it refers to an item number within these calculations.
- 4. To save space, unit conversion factors for numerical consistency, where used, are not shown in the calculations. Any apparent small numerical discrepancies are due to giving data to limited places of decimals but to taking the full figure for any calculations involving that data.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Item	No.	Item											Unit		nount	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		The data in items [2] – [7] applies to SAR 26 Class 4-8-4 No. 3450.														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2		Mass of engine (excluding tender) ^[1]										ton		123		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		Actual coupled wheel diameter over tyre rolling plane at time of tests \approx											n	1,50		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4		Speed km/h 20 40 60)	80		100	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5		Engine rotational	speed, n,	= [4] -	÷(π x [3])	H	z	1,18	2,36	3,5	4	4 4,72		5,89	
7 Maximum indicated power per unit of engine mass (maximum specific indicated power, $P_{s.ind.max}$) = [6] ÷ [2] kW/ton 9,31 17,48 23,70 28,13 30,60 8 Maximum design speed, 5AT, [1.3.(27)] kW/ton 9,31 17,48 23,70 28,13 30,60 9 Coupled wheel diameter, 5AT, [1.3.(27)] km/h 200 mph 125 9 Coupled wheel diameter, 5AT, [1.3.(22)] m 1,88 10 Maximum engine rotational speed, 5AT, = [8] ÷ (π x [9]) Hz 9,41 11 To determine the maximum specific indicated power ($P_{s.ind.max}$) – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables i found by iteration from the data of item [7] to be { $P_{s.ind.max} \approx 8,9 n - 0,62 n^2$ }. 12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, SAT = Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,4 14 $P_{s.ind.max}$ loco 3450 from equation [11] kW/ton <t< td=""><td>6</td><td></td><td>Maximum indicat</td><td>ed power</td><td>r^[2]</td><td></td><td></td><td>k</td><td>W</td><td>1 145</td><td>2 1 5 0</td><td>2 91</td><td colspan="2">5 3 460</td><td></td><td>3 775</td></t<>	6		Maximum indicat	ed power	r ^[2]			k	W	1 145	2 1 5 0	2 91	5 3 460			3 775	
Psindmax limits Spectric indicated power, Psindmax) = [6] ÷ [2] kW/ton 9,31 17,48 23,70 28,13 30,60 8 Maximum design speed, 5AT, [1.3.(27)] km/h 200 mph 125 9 Coupled wheel diameter, 5AT, [1.3.(22)] m 1,88 10 Maximum engine rotational speed, 5AT, = [8] ÷ (π x [9]) Hz 9,41 11 To determine the maximum specific indicated power ($P_{s.ind.max}$) – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables i found by iteration from the data of item [7] to be { $P_{s.ind.max} \approx 8,9 n - 0,62 n^2$ }. 12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, 5AT = Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,4 14 $P_{s.ind.max}$ $loco 3450$ from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86 30,90 28. 15 Nominal engi	7		Maximum indicat	ed power	r per ur	nit of er	ngine										
8 Maximum design speed, 5AT, [1.3.(27)] km/h 200 9 Coupled wheel diameter, 5AT, [1.3.(22)] m 1,88 10 Maximum engine rotational speed, 5AT, = [8] \div (π x [9]) Hz 9,41 11 To determine the maximum specific indicated power ($P_{s.ind.max}$) – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables i found by iteration from the data of item [7] to be { $P_{s.ind.max} \approx 8,9 n - 0,62 n^2$ }. 12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, 5AT = [1.3.(27)] Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,9 13 Engine rotational speed, 5AT = [1.2] \div (π x [9]) Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,9 14 $P_{s.ind.max}$ loco 3450 from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86			$P_{s \text{ ind max}} = [6] \div [2]$	2]					/ton	9,31	17,48	23,7	70	28,13	3	30,69	
mph 125 9 Coupled wheel diameter, 5AT, [1.3.(22)] m 1,88 10 Maximum engine rotational speed, 5AT, = [8] \div (π x [9]) Hz 9,41 11 To determine the maximum specific indicated power ($P_{s.ind.max}$) – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables i found by iteration from the data of item [7] to be { $P_{s.ind.max} \approx 8,9 n - 0,62 n^2$ }. 12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, 5AT = [12] \div (π x [9]) Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,41 14 $P_{s.ind.max}$ loco 3450 from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86 30,90 28. 15 Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)] ton 80 16 [14] x [15] kW 626 1 163 1 614 1 976 2 50 <t< td=""><td>8</td><td></td><td colspan="7">Maximum design speed, 5AT, [1.3.(27)]</td><td></td><td colspan="2">km/h</td><td colspan="2">200</td></t<>	8		Maximum design speed, 5AT, [1.3.(27)]								km/h		200				
9 Coupled wheel diameter, $5AT$, $[1.3.(22)]$ m 1,88 10 Maximum engine rotational speed, $5AT$, $= [8] \div (\pi \times [9])$ Hz 9,41 11 To determine the maximum specific indicated power ($P_{s.ind.max}$) – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the $5AT$, the equation linking these two variables i found by iteration from the data of item [7] to be $\{P_{s.ind.max} \approx 8,9 \text{ n} - 0,62 \text{ n}^2\}$. 12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, $5AT =$ Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,4 14 $P_{s.ind.max}$ loco 3450 from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86 30,90 28. 15 Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)] ton 80 16 [14] x [15] kW 626 1 163 1 614 1 976 2 250 2 438 2 498 <td></td> <td></td> <td colspan="11"></td> <td>ph</td> <td>1</td> <td>125</td>														ph	1	125	
10Maximum engine rotational speed, $5AT$, = [8] ÷ (π x [9])Hz9,4111To determine the maximum specific indicated power ($P_{s.ind.max}$) – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables i found by iteration from the data of item [7] to be { $P_{s.ind.max} \approx 8,9 n - 0,62 n^2$ }.12Speedkm/h204060801001201301401601802013Engine rotational speed, $5AT$ = [12] ÷ (π x [9])Hz0,941,882,823,764,705,646,116,587,538,479,4114 $P_{s.ind.max}$ loco 3450 from equation [11]HZ0,941,45420,1724,7028,1330,4731,2331,7231,8630,9028.15Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)]ton8016[14] x [15]kW6261 1631 6141 9762 2502 4382 4982 5382 5492 4722 3	9	9 Coupled wheel diameter, 5AT, [1.3.(22)]								m		1,88					
11To determine the maximum specific indicated power $(P_{s.ind.max})$ – engine rotational speed (n) curve for 3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables is found by iteration from the data of item [7] to be $\{P_{s.ind.max} \approx 8.9 \text{ n} - 0.62 \text{ n}^2\}$.12Speedkm/h204060801001201301401601802013Engine rotational speed, 5AT = [12] $\div (\pi x [9])$ Hz0.941.882.823.764.705.646.116.587.538.479.414 $P_{s.ind.max} \log 3450$ from equation [11]kW/ton7.8214.5420.1724.7028.1330.4731.2331.7231.8630.9028.15Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)]ton8016[14] x [15]kW6261 1631 6141 9762 2502 4382 4982 5382 5492 4722 3	10)	Maximum engine	Maximum engine rotational speed, 5AT, = [8] \div (π x [9])										Hz		,41	
3450 up to the maximum engine rotational speed of the 5AT, the equation linking these two variables i found by iteration from the data of item [7] to be $\{P_{s.ind.max} \approx 8,9 n - 0,62 n^2\}$. 12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, 5AT = [12] ÷ (\pi x [9]) Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,4 14 P_s.ind.max loco 3450 from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86 30,90 28. 15 Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)] ton 80 16 [14] x [15] kW 626 1 163 1 614 1 976 2 250 2 438 2 498 2 538 2 549 2 472 2 3	11	l	To determine the	maximum specific indicated power (Ps.ind.max) – engine rotational s											speed (n) curve <u>fc</u>		
12 Speed km/h 20 40 60 80 100 120 130 140 160 180 20 13 Engine rotational speed, $5AT =$ [12] $\div (\pi x [9])$ Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,4 14 $P_{s.ind.max}$ loco 3450 from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86 30,90 28. 15 Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)] ton 80 16 [14] x [15] kW 626 1 163 1 614 1 976 2 250 2 438 2 498 2 538 2 549 2 472 2 3			<u>3450</u> up to the maximum engine rotational speed of the 5AT, the equation linking to found by iteration from the data of item [7] to be $\{P_{n+1}, \dots, \infty\} \otimes \{P_{n+1}, \dots, \infty\} \otimes \{P_{n+1}, \dots, \infty\}$								king t	hese t	wo v	ariab	les is		
13 Engine rotational speed, $5AT =$ Hz 0,94 1,88 2,82 3,76 4,70 5,64 6,11 6,58 7,53 8,47 9,4 14 $P_{s.ind.max}$ $10co$ 3450 from equation [11] kW/ton 7,82 $14,54$ $20,17$ $24,70$ $28,13$ $30,47$ $31,23$ $31,72$ $31,86$ $30,90$ 28.13 15 Nominal engine mass, $5AT$ (excluding any ballast applied solely for stability) = [1.3.(6)] ton 80 16 [14] x [15] kW 626 1 163 1 614 1 976 2 250 2 438 2 498 2 538 2 549 2 472 2 3	12		Speed	km/h	20	40	60	80	100	120	130	140	16	50	180	200	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	Engi	ne rotational														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		spee	$d_{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2$				3,76	4,70	5,64	6,11	6,58	3 7,5	53	8,47	9,41		
14 $P_{s.ind,max}$ loco 3450 from equation [11] kW/ton 7,82 14,54 20,17 24,70 28,13 30,47 31,23 31,72 31,86 30,90 28.13 15 Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)] ton 80 16 [14] x [15] kW 626 1 163 1 614 1 976 2 250 2 438 2 498 2 538 2 549 2 472 2 3		[12]	$\div(\pi \times [9])$														
equation [11]kW/ton7,8214,5420,1724,7028,1330,4731,2331,7231,8630,9028.3315Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = [1.3.(6)]ton8016[14] x [15]kW62611631614197622302438253825492472233	14	Ps.ind.	_{d.max} <u>loco 3450</u> from														
15 Nominal engine mass, 5AT (excluding any ballast applied solely for stability) = $[1.3.(6)]$ ton 80 16 $[14] \times [15]$ kW 626 1 163 1 614 1 976 2 2 438 2 498 2 538 2 472 2 3		equa	equation [11] kW/ton 7,82 14,4			14,54	20,17	24,70	24,70 28,13 30,47 31,23			31,72	2 31,	86 3	0,90	28.85	
16 [14] x [15] kW 626 1 163 1 614 1 976 2 250 2 438 2 498 2 538 2 549 2 472 2 3	15	Nom	Nominal engine mass, 5AT (excluding any ballast ap					plied so	lely for	stabili	y) = [1.1]	3.(6)]		t	on	80	
	16	5 [14] x [15]		kW	626	1 163	1 614	1 976	2 2 5 0	2 438	3 2 498	2 53	8 2 5	49 2	472	2 308	

- 5. References are shown in superscript square brackets ^[] and are given in full at the end of the calculations.
- Fundamental data is in **bold** type. 6.

Item	No.			Item									An	ount
17	The superior design of the 5AT and use of better fuel than SA coal would tend to raise its maximum specific													
	indicated power characteristic above that of 3450. However this would tend to be offset by the 5AT's													
	comparatively small firegrate area and firebox volume relative to overall locomotive size. For the 5AT the													
	figures in item [16] are to be multiplied by a factor (α): the magnitude of α is arrived at by engineering													
	judgement and is speed dependent. Through the middle of the speed range $(80 - 140 \text{ km/h}) \alpha$ is conservatively													
	set at 1,0 (i.e. the factors given above are presumed to cancel each other). At the top of the speed range (200													
	streamlining, g is set at 1.10. At the lower and of the speed range (20 km/h) nower is limited by adhesive mass													
	streamlining, α is set at 1,10. At the lower end of the speed range (20 km/h) power is limited by adhesive mass and P is dependent on the ratio of (adhesive mass i total anging mass)													
10	$r_{s.ind.max}$ is dependent on the ratio of {adhesive mass : total engine mass}.												0	62
10))	Ratio of adhesive	mass . tota	1 engin	le mass		-	0	,02 75					
20	,)	Factor q at 20 km/	lliass . ioid h is takan	. total engine mass, $3A_1, -[1.3.(9)] + [1.3.(0)]$										<u>,73</u> 20
20	,	For intermediate s	needs a h	$[aKell as [19] \pm [18] \approx$,20
		range α is as follow	ws	us a nas sunable interineulate values, over the full speed										
(12)		Sneed	km/h	20	40	60	80	100	120	130	140	160	180	200
21	Facto	or a	-	1.20	1.07	1.02	1.00	1 00	1.00	1.00	1 00	1 01	1.04	1 10
21	Tarc	vet 5AT max		1,20	1,07	1,02	1,00	1,00	1,00	1,00	1,00	1,01	1,01	1,10
	indic	ated power	kW	751	1 2 4 4	1 646	1 976	2 2 5 0	2 4 3 8	2 498	2 538	2 574	2 571	2 539
	= [10	6] x [21]												
23	Targ	et 5AT max.												
	indi	ated t.e.	kN	135,2	112,0	98,8	88,9	81,0	73,1	69,2	65,3	57,9	51,4	45,7
	= [22	2] ÷ [12]						-						
24	Loco	motive rolling resis	stance is d	efined a	as {indi	cated t	ractive	effort -	- equiva	alent dr	awbar	tractive	effort}	. A
	specific rolling resistance – speed curve for non-streamlined steam locomotives is derived from the BR													
	Perfo	ormance & Efficien	cy Test Bı	ulletins	for the	BR Sta	andard	Class 8	4-6-2 ^{[2}	⁹ and R	ebuilt	Merch	ant Nav	/y'
	Class	s 4-6- $2^{[4]}$, which hav	ve similar	overall	size (in	ncludin	g tende	r) and a	axle loa	ıds (ma	ximum	and av	erage)	to the
	5AT	, and which have ve	ery similar	rolling	resista	nce – s	peed cı	irves, v	which a	re thoug	ght to b	e accur	ate. Ap	plying
	these	e latter curves to the	respective	e total l	ocomo	tive ma	sses at	assume	ed avera	age mas	ss (i.e. v	with $2/3$	3 of the	total
	supp	lies in the tender) g	ives the sp	ecific i	folling i	resistan	ice curv	ves for	the two $2\sqrt{6}$	classes	s conce	rned ^[5] .	The m	ean of
	these	e two curves is desc	ribed by a 14×1000	n equat	101 01 1	he forn	$n \{r = a$	1 + bv +	$- cv^{-}$	', speci	fically i	tor the	two cla	sses
	Conc (Not	erned $\{r \approx (45 \pm 0), 2$	24V + 0,00 docoriboo	$50V$)},	, where	r = spe	connot	he use	esistanc	e in N/	ton and	v = sp	eed in I	$\frac{m}{n} = \frac{m}{n}$
	(INOL Zero	(see items [1 3 (16/	1 and 1	101111g 3 (166)	10SIStal	ce it is	cannot	. De use	u to giv		ing test	stance	by put	ng v –
25	Spec	ific rolling	+)] and [1.	5.(100)				1			1			
23	resis	tance non-	N/ton	51.2	60.4	72.4	87.2	105.0	125.6	137.0	149 2	175.6	204.8	237.0
	strea	mlined steam	10/1011	51,2	00,1	<i>12</i> , 1	07,2	105,0	120,0	157,0	117,2	175,0	201,0	237,0
	locoi	notive of ≈ 20 ton												
	axle	load												
26	Com	bining data for the	DR 03 Cla	ss ^[7] , P	O 231.	722 Cla	ss ^[7] , &	LNER	A4 Cl	ass ^[8] , t	he redu	ction in	locom	otive
	speci	ific rolling resistanc	e due to (a	average	e) strear	nlining	can be	given	by the	equation	$n \Delta r \approx 0$	0,0009	v^2 , whe	re ∆r
	is in	N/ton and v in km/l	h. As the 5	AT wi	ll only	be semi	i-strean	nlined,	it is ass	sumed t	hat onl	y half t	his redu	uction
	will	apply, i.e. $\Delta r \approx 0,00$	045v ² . (N	ote that	t for ve	ry high	-speed	running	g (ca. 2	00 km/	h) the r	need for	optim	um
	strea	mlining is apparent	, hence the	e strean	nlined f	orm of	moder	n high-	speed t	rains. S	emi-str	eamlin	ing is,	
	howe	ever, specified for a	esthetic re	asons.)	Hence	Δr is:								
27	Δr		N/ton	0,2	0,7	1,6	2,9	4,5	6,5	7,6	8,8	11,5	14,6	18,0
28	Spec	ific rolling												
	resis	tance, semi-	3.7/	51 ^	50 -	7 0 0	0.1.2	100 -	110 1	100 1	1 40 4	1 (+ +	100 -	010.0
	strea	mlined steam loco.	N/ton	51,0	59,7	70,8	84,3	100,5	119,1	129,4	140,4	164,1	190,2	219,0
	$ot \approx$	20 ton axle load =												
20	$\begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \end{bmatrix}$ For an 80 ton engine with 80 ton tender, average mass of 5AT in service = $\begin{bmatrix} 1 & 2 & (16) \end{bmatrix}$ tor = $\begin{bmatrix} 1 & 42 & 2 \\ 2 & 3 & 3 \end{bmatrix}$								2.2					
29	29 For an 80 ton engine with 8		T I I I I I I I I I I I I I I I I I I I	ender, a	average	mass (JIJAI	III Serv		1.3.(10)	<u> </u>	1011	14	∠,∠
30	Kolling resistance of $5AT$.1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	72	85	10.1	12.0	1/1 2	16.0	18/	20.0	22.2	27.0	311
31	- [20 Tare	oj a [29] Tet 5AT mavimum	KIN	1,5	0,5	10,1	12,0	14,5	10,9	10,4	20,0	25,5	27,0	51,1
51	larget SAI maximum			127 0	103 5	88 7	76 9	66 7	56.2	50.8	45 3	34 6	24 4	14.6
	sneed on level tangent			121,9	103,3	00,7	10,7	00,7	50,2	50,0	т,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	54,0	<i>2</i> -7,7	17,0
	trac	k = [23] - [30]												
	u au													

Item	No.				Item							Unit	Am	ount	
(12)		Speed	km/h	20	40	60	80	100	120	130	140	160	180	200	
32	Targ	get 5AT maximum													
	drav	vbar power at	kW	711	1 150	1 478	1 709	1 853	1 875	1 834	1 760	1 539	1 221	811	
	cons	tant speed on level													
	tang	gent track = [12] x [31]													
33	5	Starting indicated tractive effort = [1.3.(53)] kN									kN	15	57		
34	·	Nominal starting wh	eel rim t	ractive	effort =	= [1.3.(4	48)]					kN	146		
35)	Starting drawbar trac	ctive effo	ort on le	evel tan	gent tra	ack = [1.3.(169	9)]			kN	13	34	
36	36 Starting drawbar efficiency (= e. db. t.e. ÷ wheel rim t.e.						im t.e.)	= [35]	÷[34]	~		%	9	2	
	This rather low figure for a fully roller bearing equipped locomotive reflects the														
25	,	large tender mass for	the loce	omotive	e's nom	inal tra	ctive e	ttort.	•			1	1 /		
37		The tractive effort and power versus speed characteristics are drawn in Fig. 1.1.1 . Note that the ex										the exte	ent of		
		the fall-off in drawba	ar tractiv	e effort	t and po	ower at	very h	ign spe	ed is in	fluence	a by th	le large	tender		
		(required for long op	erating i	ange) v	which h	anarkedi	y affec	cts the power : mass ratio of the complete							
		streamlining are two	importa	nt varia	i y mgn bles af	-speed	bigh-si	on. The	us tenue	er size a	and the	extent	01		
25)	A dhesion may be a	limiting	factor c		ar outp	ut In th	o stoor	n era ad	Ihagian	data w	oriod w	idalu ai	nd	
50	,	was unreliable but	nore rec	ent data	a can ha	e assum	ned to h	e more		te alth	ough it	must h	widely and		
		mind that wheel-rail	adhesio	n varie	s contir	nuously	from r	point to	point a	and adh	esion -	- speed	curves	give	
		no more than an ave	rage pic	ture. To	o auote	from K	Coffmai	n ^[9] : "[A	Adhesio	n] will	depend	1 on wh	eel and	rail	
		conditions, whether	wet or d	ry, on c	dynami	c chara	cteristi	cs of th	e vehic	le, runi	ning ge	ar, driv	e, and u	apon	
		the geometry of the	wheel to	rail co	ntact co	ondition	ns. A re	duction	n of the	coeffic	cient of	f adhesi	on, μ, i	s	
		unavoidable even in	ideal co	ndition	s, negle	ecting t	he influ	ience o	f the at	ove fa	ctors, v	vith inc	reasing		
		speed, due to elastic	slip." H	e gives	effecti	vely 4	equatio	ns for a	lescribi	ing the	adhesio	on – spe	eed		
		relationship, which	give the	followi	ng resu	ılts. (No	ote: alth	nough H	Koffma	n is ref	erring t	to the a	dhesion	of	
		diesel and electric tr	action, t	he equa	tions a	re cons	idered	applica	ble to r	nodern	steam	traction	ı.)		
39)	Speed	km/h	0	20	40	60	80	100	120	140	160	180	200	
40)	Equation (1): for dry	rail:												
		$\mu = \{0, 161+7, 5/(v + 1)\}$	44)}	0,331	0,278	0,250	0,233	0,221	0,213	0,206	0,202	0,198	0,194	0,192	
41		Equation (2): for dry	rail:												
		$\mu = \{\mu_0(8+0, 1v)/(8+0$),18v)}	0,350	0,302	0,276	0,261	0,250	0,242	0,236	0,232	0,228	0,225	0,223	
		where $\mu_0 = 0.35$	05403												
42		Taking the average of	of [40]	0.241	0.000	0.000	0.047	0.000	0.000	0.001	0.017	0.010	0.010	0.000	
10		and [41] μ for dry ra	11 1S:	0,341	0,290	0,263	0,247	0,236	0,228	0,221	0,217	0,213	0,210	0,208	
43)	Equation (3): for we	t rail:	0.265	0.000	0.200	0.100	0 177	0.170	0.165	0.1(2	0.159	0.155	0.154	
1/	1	$\mu = \{0, 129 + 6, 0/(v - 129 + 6), 0/(v$	+ 44)}	0,265	0,222	0,200	0,186	0,177	0,170	0,165	0,162	0,158	0,155	0,154	
44	ł	Equation (4): for we $(4 - 1)^{(0)}$	1	0.260	0.224	0 205	0.104	0.196	0 1 9 0	0 176	0 172	0.170	0 167	0 165	
		$\mu = \{\mu_0(0+0,1)/(0+0)$	J,18V)}	0,200	0,224	0,203	0,194	0,180	0,180	0,170	0,172	0,170	0,107	0,105	
15	;	Where $\mu_0 = 0,20$ Taking the average of	f[/3]												
4.	,	and [44] if for wet ra	il is:	0 263	0 223	0 203	0 190	0 182	0 175	0 171	0 167	0 164	0 161	0 160	
46	,	Adhesion has to be r	elated to	wheel	rim tra	ctive ef	fort at	startin	g [34] ÷	- [33] =	= [] 3 (4	42)]·	-	0.93	
47	, 1	When running the ra	tio of wh	neel rim	ite i	ndicate	dte m	av he e	expected	$\frac{1991}{10}$ he	higher	than		0,75	
- T		[46] as hydrodynami	c lubrics	ation wi	ill annly	v to the	piston	rings 1	tail rod	bearing	25. pist	on rod			
		and tail rod packings	and cro	osshead	slippe	rs, lowe	ering th	eir fric	tional r	esistan	ce. The	refore			
		except at zero speed.	for the	purpose	es of the	ese calc	culation	is this r	atio is 1	made:		· ,	-	0,96	
48	3	Wheel rim t.e.													
		= [23] x [47]	kN	146,0	129,8	107,5	94,8	85,3	77,8	70,2	62,7	55,6	49,3	43,9	
L		([34] at 0 km/h)		Ĺ		Ĺ	,	,	Ĺ	Ĺ	Ĺ	Ĺ	,	Ĺ	
49)	Required value of		ſ	ſ	ſ			ſ	ſ		T			
		$\mu = [48] \div [1.3.(9)]$	-	0,248	0,221	0,183	0,161	0,145	0,132	0,119	0,107	0,094	0,084	0,075	
50)	Required value of													
		μ = loco No. 3450	-	0,289	0,266	0,236	0,204	0,181	0,161	-	-	-	-	-	
1				1	1	1			1	1		1			

Item No.	Item	Unit	Amount
51	The data of items [42] [45] [49] and [50] is given in Fig. 1.1.2. from which it is se	een that the	e adhesion
	coefficient required for maximum power operation of the 5AT is within that avail	lable on bo	th dry and
	wet rails. However it should be noted that the wet rail curve appears to refer to th	e maximur	n possible on
	wet rails, i.e. when they are very wet. Under conditions such as drizzle, snow, or	wet leaves	the available
	adhesion may be considerably less than given by this curve, in which case recours	se to sandi	ng will be
	necessary, especially in the lower half of the speed range. Note that the curves for	r the 5AT a	and 3450 are
	based on the mean tractive effort per coupled wheel revolution, and take no accou	unt of varia	tions in
	tractive effort per revolution. Note also that the 5AT will be in a markedly better	position re	garding
	adhesion than 3450, which at full power required more adhesion than was available	ole on wet	rails up to
	some 80 km/h, or over almost its entire permitted speed range.		

D. Wardale Inverness 2002-08-14

References.

- 1. Wardale D., *The Red Devil & Other Tales from the Age of Steam*, pub. by the author, Inverness, 1998: page 191.
- South African Transport Services (formerly South African Railways & Harbours), Mechanical Engineering Department, Chief Mechanical Engineer's Office, Pretoria: Prototype 26 Class Locomotive No. 3450: Performance & Efficiency Test Report: CME's reference RLS 15/2/22 dated 1983-12-30. Also Wardale D., The Red Devil & Other Tales from the Age of Steam, pub. by the author, Inverness, 1998: page 268, Fig. 83.
- 3. British Transport Commission, *Performance & Efficiency Test Bulletin No. 15, BR Standard Class 8 4-6-2,* London 1957.
- 4. British Transport Commission, Performance & Efficiency Test Bulletin No. 20, Rebuilt 'Merchant Navy' Class 4-6-2, London 1958.
- 5. Wardale D., *The Red Devil & Other Tales from the Age of Steam*, pub. by the author, Inverness, 1998: page 266, Fig. 80.
- 6. Phillipson E. A., *Steam Locomotive Design: Data & Formulae*, The Locomotive Publishing Co. Ltd., London, 1936, page 33.
- 7. Chapelon A., *La Locomotive a Vapeur*, English edition, translated by Carpenter, G. W., Camden Miniature Steam Services, Bath, 2000, pages 184 & 187.
- 8. Allen C. J., British Pacific Locomotives, Ian Allan, London, 1962, pages 49-50.
- 9. Quayle J. P., Editor, *Kempe's Engineers Year-Book*, 90th Edition, Morgan-Grampian Book Publishing Co. Ltd., London, 1985: page J3/4.