Contents		
Chapter I - Establishing the Fundamentals	1	
Introduction	1	
Some Early Investigations	2	
Empirical Methods of Determining Boiler Size	11	
Some Influential French Tests	17	
Some important Concepts Derived from the Nord Boiler Tests	22	
Professor Goss' Experiments into Boiler Behaviour	24	
The Tests Conducted at St Louis	26	
Lawford Fry's Analysis of the St Louis Results	28	
Summary and the Significance of Mr. Fry's Contribution	36	
Chapter II - Calculating a Heat Balance	41	
Introduction	41	
The Constituents Forming the Heat Balance	41	
Constructing a Heat Balance Using the Initial 'Fry Method'	46	
Comparing Heat Balances Determined by the Two Methods	48	
The Rugby Method	50	
Considering the Various Efficiencies	56	
Boiler Efficiency Curves	59	
Chapter III - Some Revealing Relationships	65	
Introduction	65	
Determining the Maximum Evaporation	65	
Great Western Development of Mr Fry's Method	69	
The Combustion and Absorption Efficiencies	72	
Performance of the Heating Surfaces	88	
Chapter IV - The Response to Changes in Output	91	
Introduction	91	
Changes in Firebox Temperature with Output	91	
Distribution of the Heat Absorption between the Direct & Indirect Surfaces	94	
Boiler Performance Diagrams	99	
Some of the Factors Serving to Influence Boiler Performance	113	
Chapter V - Predicting Performance - I	129	
Introduction	129	
Prediction Methods	129	
Sample Design Procedures	146	
Comparing Steam Output Predictions	177	
Summary	179	
Chapter VI - Heat Transmission within the Firebox	187	
Introduction	187	
Specific Heat Availability and Furnace Liberation Rate	187	
Stationary Boiler Furnaces	188	

Firebox Volume and Proportions	191
The nature of the Heat Transfer within the Firebox	194
Quantifying the Heat Absorbed and the Firebox Gas Exit Temperature	197
Combustion Chambers	205
Brick Arches and Firebox Refractory, Arch Tubes and Syphons	208
Summary	220
Chapter VII - The behaviour of the Firebox in Service	223
Introduction	223
Predicting Heat Transfer in the Firebox	224
The influence Excess Air, Scaling, etc. on the Heat Transferred	228
Determining a Thermal Loading Limit for a Boiler	235
The Woes of the Locomotive Firebox	240
Inner Firebox Movement	241
The Impact that High Heat Fluxes with or without Scaling had on Plate	249
Temperatures	
Summary	283
Chapter VIII - Heat Transmission across the Tubular Surfaces	287
Introduction	287
Some Characteristics of Tube Performance	287
Heat Transfer Within the Tubes	291
The Heat Transfer Process	295
Using Heat Transfer Formulae to Compare Tube Performance	301
Practical tube Performance	303
Special Profile Tubes	309
Tube and Flue Gas Exit Temperatures	319
Considering the Interaction Between the Tubes and Flues with Tubeplates	322
Why Tubular Heating Surface Behaves in the way it Does	327
Chapter IX - Superheater Behaviour	
Introduction	331
Overview	331
Superheater Characteristics	337
The Paradox in Superheater Performance	343
Pennsylvania Railroad Superheater Tests	345
Superheater Elements	349
Metal Temperatures, Steam Velocity and Element Life	361
Steam Circuit Size vs Pressure Drops	
Superheater Temperature Control	368
Obtaining the Characteristic Curve and the Final Steam Temperature	374
Factors Influencing Superheater Performance	383
Chapter X - Pressure Drop through the Boiler	399
Introduction	399
Boiler Resistance and Heat Transfer	399
The Impact on Gas flow by Altering Individual Resistances	405

On the Nature of the Tubular Resistance		
Concerning the Gas-Side Pressure Drop		
Cal	culating the Pressure Drop in a Constant Diameter Tube System	418
Obt	taining the Pressure Drops in the Tubes and Flues	421
The	Pressure Drops in the Remaining Sections	435
Chapte	er XI - Predicting Performance - II	439
Intr	oduction	439
Esta	ablishing Firebox Performance	441
Cor	nsidering some Firebox Heat Transfer Predictions	447
Qu	antifying the Heat transfer within the Barrel	452
Usi	ng the Effectiveness-NTU Method to Predict Barrel Heat Transfer	459
Usi	ng the LMTD Method to Predict Barrel Heat Transfer	465
Ob	servations and Comments Concerning the Two Prediction Methods	472
Oth	ner Superheater Designs	482
Oth	ner Possible Predictions	495
Appen	dices	503
Α.	Steam Tables and Superheat	503
В.	The It - Diagram	507
С.	Example Combustion Calculations	510
D.	Enthalpy and Other Waste Gas Properties	515
Ε.	The Traditional Heat Balance	518
F.	Some Notes Concerning Heat Transfer within the Firebox	520
G.	Roland Bond's Averaging Method	525
Н.	Lawford Fry's Initial Method	527
١.	Fry's Revised Methods for Determining Superheat and Heat Transfer	532
J.	William Roland's Method	539
К.	D W Sanford's Method for Determining the Gas Flow	
	through Tubes and Superheater	542
L.	Some Great Western Boiler Calculations	545
M.	German Approaches	549
N.	Some Metallurgical Considerations	557
0.	Boiling Phenomena	564
Ρ.	Complete Boiler Prediction Example	568