Austerity 2-8-0 90733 Horn Guide and Frame Re-design

<u>Tom Kay</u>

University of Huddersfield / Keighley Worth Valley Railway

Hello

About me

A keen railwayman for 10 years

I've operated on both the KWVR and the mainline railway network for the past 5 years.

Became a fireman at age 19

Completed my final year at Huddersfield University and attained a degree in Mechanical Engineering, my dissertation being this subject talked about today.

Carrying on this year and next to hopefully attain a Masters qualification.

Introduction

War Department locomotive number 79257 was built at Vulcan Foundry Newton Le- Willows Preston in January 1945. Constructed to aid the war effort.

History

Procedure

Step 1	Step 2	Step 3	
Create a CAD model of the locomotive frame on Solidworks	Calculate forces to be applied onto horn guides within frame	Mesh and apply forces to frame	
Step 4	Step 5	Step 6	
Identify areas of high stress and attain displacement	Create modifications and add to the frame to reduce the stress application	Simulate, ascertain whether modifications have strengthened frame.	

The Plan – Step 1

Calculation of Forces longitudinal – Step 2

Piston Force = Steam Pressure x Piston Area

 $225 \times \frac{\pi \times 19^2}{4}$ $225 \times 283.53 = 63794$ 63794lbs = 28936.47kg $28936.47 \times 9.81 = 283866.77N$ $283866.77 \times 0.7 = 198706.739N$ $T_1 = P(D - \frac{S}{D})$ $T_1 = 198706.739(1.44 - \frac{0.3683}{1.44})$ $T_1 = 235315.6958$ $\frac{T_1}{4} = 58828.92$

225 psi boiler pressure, 19-inch diameter piston.

Change from lbs to kg.

Weight to force.

30% reduction to account for steam losing energy through steam circuit.

Equation used as shown opposite

P is the piston force, D is wheel diameter and S is the length of piston stroke.

Thrust force divided by 4 as force shared to 4 coupled wheel sets.

Application Forces – Step 2

To correctly simulate the horn guides, working loads for the relevant forces had to be calculated. These comprised of a longitudinal force from the piston thrusts, a lateral forces for when the loco negotiates track curvature and a vertical static force for the weight of the locomotive.

Meshing on CAD drawing - Step 3

Global mesh size	mesh control size	displacement	1/ mesh control size
4	0.8	7.1472836	1.25
	0.7	7.1819429	1.428571429
	0.6	7.1387687	1.666666666
	0.5	7.2039609	2
	0.4	7.2377839	2.5
	0.3	7.2857637	3.333333333
	0.2	7.3039393	5
	0.1	7.3006802	10

Identification of high stress areas – Step 4

Identification of high displacement– Step 4

Identification of high stress areas with cant applied to track – Step 4

Create frame modifications – step 5

Fourth modification- enlarged top keep

Create frame modifications – step 5

Fifth modification, reduced material on top keep

Create frame modifications – step 5

Final design

Have modifications strengthened the frame? – Step 6

Modification number	With Cant		Without Cant	
	Stress N/m^2 (x10^8)	Displacement (mm)	Stress N/m^2 (x10^8)	Displacement (mm)
Current design	3.631	3.457	3.885	4.397
1	3.878	1.278	3.650	1.566
2	3.174	1.237	3.278	1.522
3	N/A	N/A	4.003	1.257
4	2.849	1.191	2.829	1.455
5	2.914	1.192	2.910	1.457
6	2.482	1.191	2.677	1.384

Have modifications strengthened the frame? – Step 6

Modification number	With Cant		Without Cant	
	Stress N/m^2 (x10^8)	Displacement (mm)	Stress N/m^2 (x10^8)	Displacement (mm)
Current design	3.631	3.457	3.885	4.397
1	3.878	1.278	3.650	1.566
2	3.174	1.237	3.278	1.522
3	N/A	N/A	4.003	1.257
4	2.849	1.191	2.829	1.455
5	2.914	1.192	2.910	1.457
6	2.482	1.191	2.677	1.384

% decrease= 32% % decrease= 65.5% % decrease= 31% % decrease= 69 %

Pictures

Thank You!

Any Questions?