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Energy, Entropy, Enthalpy 
  
In the mechanical sense, work was originally defined in terms of lifting a weight to a 
certain height. The quantity of work was defined as the product of the weight and the 
height. This definition was then generalized, so that work was considered to be done 
whenever any kind of force is exerted through some distance. The quantity of work is the 
force multiplied by the distance. When two physical systems interact, one of them may 
do work on the other. We find it convenient to assign to each physical system a quantity 
called energy, with the same units as the units of work. Whenever a system does work on 
its surroundings, we say its energy has been reduced by the amount of work done, and 
whenever a system has work done on it (by some other system) we say its energy has 
been increased by that amount of work. By the law of action and re-action, all work that 
is done by one system is done on another system. It follows that the total amount of 
energy is conserved. (Notice that we haven’t established the absolute value of energy, we 
have merely discussed changes in the energy levels.) 
  
Classical thermodynamics is founded on two principles, both of which involve the 
concept of energy. The first principle asserts that energy is conserved, i.e., energy can 
neither be created nor destroyed, and the second principle asserts that the overall 
distribution of energy tends to become more uniform, never less uniform. These two 
principles are called the first and second laws of thermodynamics.  
  
In attempting to express the absolute energy content of a certain object in terms of 
familiar state variables, consider a stationary particle of mass m floating in empty space, 
and suppose we apply a force F to this particle over a distance ∆s. By simple integration 
we know that an initially stationary object subjected to a constant acceleration a = F/m 
for a duration of time ∆t will have traveled a distance 
  

 

  
The velocity v of the particle at the end of the acceleration is v = a ∆t, so if we multiply 
both sides of the above equation by F we have 
  

 

  
Thus we might try to define the absolute energy of a macroscopic object as half the 
product of its mass times the square of its speed. However, if we take two identical lumps 
of clay and throw them together at high speed, the total system initially has energy 
according to our provisional definition, but after the collision it has none, because the 
lumps of clay stick together and the combined lump has zero speed. Therefore, this 
macroscopic definition of energy does not give a conserved quantity. This definition of 



energy is essentially equivalent to Leibniz’s vis viva, which literally translated means 
“living force”, but using the word “force” to signify what we today would call energy. 
When Samuel Clarke pointed out that this quantity is not conserved in such collisions, 
Leibniz replied 
  

The author [Clarke] objects that two soft or un-elastic bodies meeting together lose some of their 
energy. I answer no. ‘Tis true, their whole lose it with respect to their total motion, but their parts 
receive it, being shaken by the energy of the collision. And therefore that loss of [energy] is only 
in appearance. The energy is not destroyed, but scattered among the small parts. 

  
Here we recognize that in order for energy to be conserved we must consider not only the 
macroscopic kinetic energies of aggregate bodies, but also the microscopic kinetic 
energies of their constituent particles. The latter is usually regarded as the heat content of 
the aggregate body. Hence our concept of energy - if energy is to be conserved - must 
include not only the mechanical kinetic energies of aggregate bodies but also the internal 
heats of those bodies. 
  
However, even taking internal heat of massive objects into account, we can still find 
processes in which the quantity of energy seems not to be conserved. For example, a 
satellite in an elliptical orbit around a gravitating body moves more rapidly when it is 
near the gravitating body than when it is far from that body, so it’s kinetic energy 
changes significantly (while it’s internal heat content is not significantly altered). This 
shows that, to maintain the principle of energy conservation, we must include 
gravitational and other forms of potential in our definition of energy. (This relates to the 
original conception of work, which was based on raising objects in a gravitational field.) 
Likewise when we discover that material bodies can lose energy by emitting 
electromagnetic radiation, we must expand our definition of energy to include 
electromagnetic waves. This illustrates how we use the principle of energy conservation 
to define the concept of “energy”. We classify and quantify phenomena in whatever way 
is necessary to ensure that energy is conserved. (The great merit of the concept of energy 
is that the classifications and quantifications to which it leads are extremely useful, and 
provide a very economical and unified way of formulating physical laws.) 
  
Once we have developed our (provisional) concept of energy, we quickly discover that 
knowledge of the total quantity of energy in a given system is not sufficient to fully 
characterize that system. It’s also important to specify how the energy is distributed 
among the different parts of the systems. For example, consider a system consisting of 
two identical blocks of metal sitting next to each other in an isolated container. If the 
blocks have the same heat content they will have the same temperature, and the system 
will be in equilibrium and will not change its condition as time passes. However, if the 
same total amount of heat energy is distributed asymmetrically, so one block is hotter 
than the other, the system will not be in equilibrium. In this case, heat will tend to flow 
from the hot to the cold block, so the condition of the system will change as time passes. 
Eventually it will approach equilibrium, once enough heat has been transferred to 
equalize the temperatures. Thus in order to know how a system will change - and even to 
assess the potential for such change - we need to know not only the total amount of 
energy in the system, but also how that energy is distributed.  



  
The example of two blocks also illustrates the intuitive fact that the distribution of energy 
in an isolated system tends to become more uniform as time passes, never less uniform. 
This is essentially the second law of thermodynamics. Given two blocks in thermal 
equilibrium (i.e., at the same temperature), we do not expect heat to flow preferentially 
from one to the other such that one heats up and the other cools down. This would be like 
a stone rolling uphill.  
  
To quantify the tendency for energy to flow in such a way as to make the distribution 
more uniform, we need to quantify the notion of “uniformity”. Historically this was first 
done in terms of the macroscopic properties of gases, liquids, and solids. We seek a 
property, which we will call entropy, that is a measure of the uniformity of the 
distribution of energy, and we would like this property to be such that the entropy of a 
system is equal to the sum of the entropies of the individual parts of the system. For 
example, with our two metal blocks we would like to be able to assign values of entropy 
to each individual block, and then have the total entropy of the system equal to the sum of 
those two values.  
  
Let s1 and s2 denote the entropies of block 1 and block 2 respectively, and let T1 and T2 
denote the temperatures of the blocks. If a small quantity δq of heat flows from block 1 to 
block 2, how do the entropies of the blocks change? Clearly the change in entropy can’t 
be just a multiple of the energy, because the total energy is always conserved, so entropy 
would always be conserved as well. We want entropy to increase as the uniformity of the 
energy distribution increases. To accurately represent uniformity, a given amount of heat 
energy ought to represent more entropy at low temperature than it does at high 
temperature. Therefore, it’s reasonable to weight the changes in energy by the inverse of 
the temperature. In other words, for a block of temperature T, we define the change in 
entropy ds resulting from the addition of a small amount of energy δq to be δq/T. (We 
assume δq is small enough that it does not significantly change the temperature of the 
block.) It follows that if a small amount of heat δq flows from block 1 to block 2, the 
entropy of block 1 will be decreased by δq/T1, and the entropy of block 2 will be 
increased by δq/T2, so the net change in entropy of the whole system is  
  

 

  
Thus the net change in entropy is positive if and only if the temperature T1 of the heat 
source is greater than the temperature T2 of the heat sink. 
  
Of course, we might have defined ds corresponding to the addition of a small amount of 
energy δq in some other way, such as –Tδq. Then the net change in entropy for our 
example would have been δq(T1 – T2), which again is positive if and only if T1 is greater 
than T2. However, defining entropy to be a negative value for the addition of heat seems 
rather incongruous. Also, recognizing that changes in the temperature of a macroscopic 
object are roughly proportional to changes in its energy, we could conceptually replace T 
with q (and δq with dq), so our two candidate expressions for the differential entropy are 



ds = dq/q and ds = -qdq. Notice that, up to an additive constant, the first implies s = 
log(q) whereas the second would imply s = -q2. When defined in the context of statistical 
thermodynamics we find that entropy is given by s =  k log(W) where W signifies the 
number of microstates for the given macrostate. Thus, up to an exponent, we can roughly 
equate the heat content of an object with the number of microstates. 
  
Since entropy is a thermodynamic state property, its value depends only on the state of a 
system, not on the history of the system. Therefore, to determine the change in entropy of 
a system from one state to another, it is sufficient to evaluate the change for a reversible 
process between those two states; the change in entropy for any other process connecting 
the same two states will be the same as the change for the reversible process. (Note that 
this “conservatism” applies only to the entropy change between two states, not to the 
amount of heat flow associated with the process.) For large transfers of heat, such that the 
temperatures of the objects are significantly altered, we need only imagine a reversible 
“quasi-equilibrium” process of extracting heat from the hotter object and then another 
reversible process of adding heat to the colder object, and integrate the quantity δq/T in 
each case to give the total changes in entropy. 
  
Another useful state variable is enthalpy, defined as the sum of the internal energy and 
the product of pressure and volume. In other words, H = U + PV. The justification for 
defining this variable is really only a matter of convenience, because we often find that 
the sum U + PV occurs in thermodynamic equations. This isn’t surprising, because the 
work done by a quantity of gas depends on the product of pressure times volume. When a 
gas expands quasi-statically at constant pressure, the incremental work δW done on the 
boundary is PdV, so from the energy equation dU = δQ – δW we have δQ = dU + PdV. 
Noting that, at constant pressure, dH = dU + PdV, it follows that δQ = dH for this 
process. This explains why enthalpy is often a convenient state variable, especially in 
open systems. Obviously enthalpy has units of energy, but it doesn’t necessarily have a 
direct physical interpretation as a quantity of heat. In other words, enthalpy is not any 
specific form of energy, it is just a defined variable that often simplifies the calculations 
in the solution of practical thermodynamic problems. 
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