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Energy, Entropy, Enthalpy

In the mechanical sensgork was originally defined in terms of lifting a weigio a
certain height. The quantity of work was definedresproduct of the weight and the
height. This definition was then generalized, s thork was considered to be done
whenever any kind of force is exerted through sdmstance. The quantity of work is the
force multiplied by the distance. When two physggtems interact, one of them may
do work on the other. We find it convenient to gagb each physical system a quantity
calledenergy, with the same units as the units of work. Whenevgystem does work on
its surroundings, we say its energy has been relddog¢he amount of work done, and
whenever a system has work done on it (by some etfstem) we say its energy has
been increased by that amount of work. By the [&action and re-action, all work that
is doneby one system is dorm another system. It follows that the total amount o
energy is conserved. (Notice that we haven't estiaddl the absolute value of energy, we
have merely discussed changes in the energy Igvels.

Classical thermodynamics is founded on two priregpboth of which involve the
concept oenergy. The first principle asserts that energy is consgri.e., energy can
neither be created nor destroyed, and the secamcigle asserts that the overall
distribution of energy tends to become more unifamaver less uniform. These two
principles are called the first and second lawhefmodynamics.

In attempting to express the absolute energy coofemcertain object in terms of
familiar state variables, consider a stationaryiglarof mass m floating in empty space,
and suppose we apply a force F to this particle awdistances. By simple integration
we know that an initially stationary object subggtto a constant acceleration a = F/m
for a duration of timet will have traveled a distance
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The velocity v of the particle at the end of theederation is v = at, so if we multiply
both sides of the above equation by F we have
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Thus we might try to define the absolute energg ofacroscopic object as half the
product of its mass times the square of its spdediever, if we take two identical lumps
of clay and throw them together at high speedidted system initially has energy
according to our provisional definition, but aftee collision it has none, because the
lumps of clay stick together and the combined lurap zero speed. Therefore, this
macroscopic definition of energy does not give mseoved quantity. This definition of



energy is essentially equivalent to Leibnig'sviva, which literally translated means
“living force”, but using the word “force” to sigfyi what we today would call energy.
When Samuel Clarke pointed out that this quansityat conserved in such collisions,
Leibniz replied

The author [Clarke] objects that two soft or unsétabodies meeting together lose some of their
energy. | answer no. ‘Tis true, their whole loswith respect to their total motion, but their gart
receive it, being shaken by the energy of the siolli. And therefore that loss of [energy] is only
in appearance. The energy is not destroyed, btitesed among the small parts.

Here we recognize that in order for energy to bheseoved we must consider not only the
macroscopic kinetic energies of aggregate bodigsallso the microscopic kinetic
energies of their constituent particles. The lagersually regarded as theat content of
the aggregate body. Hence our concept of eneifggnergy is to be conserved - must
include not only the mechanical kinetic energieaggregate bodies but also the internal
heats of those bodies.

However, even taking internal heat of massive dbjeto account, we can still find
processes in which the quantity of energy seemsona¢ conserved. For example, a
satellite in an elliptical orbit around a gravitegibody moves more rapidly when it is
near the gravitating body than when it is far fritvat body, so it's kinetic energy
changes significantly (while it's internal heat temt is not significantly altered). This
shows that, to maintain the principle of energysssmation, we must include
gravitational and other forms of potential in oefidition of energy. (This relates to the
original conception of work, which was based osirgj objects in a gravitational field.)
Likewise when we discover that material bodiesloae energy by emitting
electromagnetic radiation, we must expand our defmof energy to include
electromagnetic waves. This illustrates how wethseprinciple of energy conservation
to define the concept of “energy”. We classify ajdntify phenomena in whatever way
is necessary to ensure that energy is conservid.diieat merit of the concept of energy
is that the classifications and quantificationsvtach it leads are extremely useful, and
provide a very economical and unified way of foratudg physical laws.)

Once we have developed our (provisional) concephefgy, we quickly discover that
knowledge of the total quantity of energy in a giwystem is not sufficient to fully
characterize that system. It's also important &cgy how the energy is distributed
among the different parts of the systems. For exanecpnsider a system consisting of
two identical blocks of metal sitting next to eaither in an isolated container. If the
blocks have the same heat content they will hagestime temperature, and the system
will be in equilibrium and will not change its catidn as time passes. However, if the
same total amount of heat energy is distributedhasgtrically, so one block is hotter
than the other, the system will not be in equilibti In this case, heat will tend to flow
from the hot to the cold block, so the conditiorited system will change as time passes.
Eventually it will approach equilibrium, once enbugeat has been transferred to
equalize the temperatures. Thus in order to know &system will change - and even to
assess the potential for such change - we neeubto kot only the total amount of
energy in the system, but also how that energysisilouted.



The example of two blocks also illustrates theitite fact that the distribution of energy
in an isolated system tends to become more unif&time passes, never less uniform.
This is essentially the second law of thermodynan@iven two blocks in thermal
equilibrium (i.e., at the same temperature), waaoioexpect heat to flow preferentially
from one to the other such that one heats up andttier cools down. This would be like
a stone rolling uphill.

To quantify the tendency for energy to flow in sactvay as to make the distribution
more uniform, we need to quantify the notion of ifarmity”. Historically this was first
done in terms of the macroscopic properties of gdspiids, and solids. We seek a
property, which we will calentropy, that is a measure of the uniformity of the
distribution of energy, and we would like this peoty to be such that the entropy of a
system is equal to the sum of the entropies ointiwidual parts of the system. For
example, with our two metal blocks we would likebable to assign values of entropy
to each individual block, and then have the totéitapy of the system equal to the sum of
those two values.

Let 5 and g denote the entropies of block 1 and block 2 rethpedg, and let T and T
denote the temperatures of the blocks. If a smalhtjtysq of heat flows from block 1 to
block 2, how do the entropies of the blocks char@early the change in entropy can’t
be just a multiple of the energy, because the @targy is always conserved, so entropy
would always be conserved as well. We want enttopgcrease as the uniformity of the
energy distribution increases. To accurately regpresniformity, a given amount of heat
energy ought to represent more entropy at low teatpes than it does at high
temperature. Therefore, it's reasonable to weightchanges in energy by the inverse of
the temperature. In other words, for a block ofgerature T, we define the change in
entropy ds resulting from the addition of a smatlcaint of energyq to besq/T. (We
assumedq is small enough that it does not significantlpiege the temperature of the
block.) It follows that if a small amount of hexst flows from block 1 to block 2, the
entropy of block 1 will be decreased &y T;, and the entropy of block 2 will be
increased byq/T,, so the net change in entropy of the whole sysséem
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Thus the net change in entropy is positive if anly d the temperature jTof the heat
source is greater than the temperatyreffthe heat sink.

Of course, we might have defined ds correspondirtbe addition of a small amount of
energysq in some other way, such aségT Then the net change in entropy for our
example would have beéq(T; — T2), which again is positive if and only if Ts greater
than T,. However, defining entropy to be a negative vatweghe addition of heat seems
rather incongruous. Also, recognizing that changeke temperature of a macroscopic
object are roughly proportional to changes in itsrgy, we could conceptually replace T
with g (anddq with dqg), so our two candidate expressions ferdifferential entropy are



ds = dg/q and ds = -qdg. Notice that, up to antagdconstant, the first implies s =

log(q) whereas the second would imply s & Myhen defined in the context of statistical
thermodynamics we find that entropy is given by & tog(W) where W signifies the
number of microstates for the given macrostatesThp to an exponent, we can roughly
equate the heat content of an object with the numbmicrostates.

Since entropy is a thermodynamic state propedyatue depends only on the state of a
system, not on the history of the system. Theretordetermine the change in entropy of
a system from one state to another, it is sufficierevaluate the change for a reversible
process between those two states; the changeropgrior any other process connecting
the same two states will be the same as the cHang®e reversible process. (Note that
this “conservatism” applies only to the entropy @ between two states, not to the
amount of heat flow associated with the process: )dfge transfers of heat, such that the
temperatures of the objects are significantly atlewe need only imagine a reversible
“quasi-equilibrium” process of extracting heat fréime hotter object and then another
reversible process of adding heat to the coldexatpband integrate the quantdy/T in

each case to give the total changes in entropy.

Another useful state variableesthalpy, defined as the sum of the internal energy and
the product of pressure and volume. In other wdtds,U + PV. The justification for
defining this variable is really only a matter anwenience, because we often find that
the sum U + PV occurs in thermodynamic equatiohss iBn’'t surprising, because the
work done by a quantity of gas depends on the mtoafypressure times volume. When a
gas expands quasi-statically at constant prestaéncremental worBW done on the
boundary is PdV, so from the energy equation dd@Q=3W we havesQ = dU + PdV.
Noting that, at constant pressure, dH = dU + Pdfgliows thatsQ = dH for this
process. This explains why enthalpy is often a eorent state variable, especially in
open systems. Obviously enthalpy has units of gnéng it doesn’t necessarily have a
direct physical interpretation as a quantity ofthaother words, enthalpy is not any
specific form of energy, it is just a defined vai@athat often simplifies the calculations
in the solution of practical thermodynamic problems
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