WARDALE ENGINEERING & ASSOCIATES

7D Reay Street Inverness IV2 3AL Great Britain

CLASS 5AT 4-6-0: FUNDAMENTAL DESIGN CALCULATIONS

- 1. GENERAL CALCULATIONS.
- 1.3. PRELIMINARY BASIC CALCULATIONS.

Notes

- 1. These calculations refer to a specific performance level, defined by item nos. [1] and [2]. Any individual performance figures given in the calculations do not necessarily give the maximum which will be achieved.
- 2. The SI system is mostly used, with Imperial units given for some items for the convenience of those not familiar with SI units. Unless otherwise stated "ton" refers to metric ton of 1000 kg. N*m³ = m³ at NTP.
- 3. Numbers in square brackets [] in column 2 refer to calculation item numbers in the Fundamental Design Calculations (FDC's): firstly the number identifying the calculations concerned, followed by the item number within those calculations, given in round brackets (), e.g. [1.1.(16)] refers to calculations 1.1. item no. (16). Where only a single number is given within square brackets, it refers to an item number within these calculations.
- 4. To save space, unit conversion factors for numerical consistency, where used, are <u>not</u> shown in the calculations. Any apparent small numerical discrepancies are due to giving data to limited places of decimals but to taking the full figure for any calculations involving that data.
- 5. References are shown in superscript square brackets [1] and are given in full at the end of the calculations.
- 6. Fundamental data is in **bold** type.

Item No.	Item	Unit	Amount
1	Maximum sustainable drawbar power at constant speed on level tangent	kW	1 890
	track, trailing a high capacity tender [Calculations 1.1. Fig. 1.1.1]:	hp	2 535
2	Speed at the above power:	km/h	113
		mph	71
		m/s	31,4
3	Equivalent drawbar tractive effort at [1] and [2]	kN	60,2
4	Maximum axle load (same as BR Class 5MT 4-6-0)	ton	20,0
5	Preliminary estimate of Class 5AT axle loads, at full supplies:		
	leading bogie (2 axles combined) (minimum value given: may be increased		
	if greater centring force required for lateral stability reasons)	ton	20,0
	leading coupled axle	ton	20,0
	driving axle	ton	20,0
	trailing coupled axle	ton	20,0
	tender axles (each of 4 axles in 2 bogies)	ton	20,0
6	Total mass of engine (full boiler): (BR Class 5MT = 77,2 tons)	ton	80,0
7	Total mass of tender, full supplies: (Note: the large high-capacity tender is	ton	80,0
	an operational requirement due to the absence of convenient watering		
	facilities: heaviest former British tender = A4 type = 66 tons gross mass.)		
8	Total mass of engine and tender, full supplies	ton	160,0
9	Adhesive mass	ton	60,0
10	Approximate gross: tare mass ratio for rectangular section tender of		
	monocoque construction (c.f. best Bulleid tender = 2,67):	-	3,0
	Note: minimizing tender mass for a given quantity of supplies is of		
	particular importance for high-speed operation, and it would be hoped to		
	increase the gross: tare mass ratio beyond the conservative figure given.		
11	Tender tare mass = $[7] \div [10]$	ton	26,7
12	Total supplies (fuel + water) = $[7] - [11]$	ton	53,3
	(highest former British figure (largest MN tender) = 32,3 tons)		
13	Average supplies during operation as a fraction of total supplies, assumed	-	0,67
14	Average tender supplies = $[12] \times [13]$	ton	35,5
15	Average tender gross mass in service = $[11] + [14]$	ton	62,2
16	Average mass of locomotive in service = $[6] + [15]$: (note: further	ton	142,2
	performance figures are calculated on the basis of this average mass).		

Item No.	Item	Unit	Amount
17	Required sustainable cylinder (indicated) power at [2], from [calculations	kW	2 380
	1.1. (Fig. 1.1.1)]:	hp	3 192
18	Cylinder (indicated) tractive effort at [2] and $[17] = [17] \div [2]$	kN	75,8
19	Maximum cylinder (indicated) power from [1.1. (Fig. 1.1.1)]:	kW	2 580
		hp	3 460
20	Maximum indicated power per ton of engine mass = $[19] \div [6]$	kW/ton	32,25
	(BR Class 5MT max. indicated power/ton of engine mass = 17,0 kW/ton)		
21	Indicated power per ton of engine mass for other high power locos, for	1 337/4	20.5
	comparison: SAR 26 Class No. 3450 (peak of power curve)	kW/ton	30,5
	SNCF 240P Class Therefore the Class 5AT figure is realistic, given its superior technology.	kW/ton	28,7
22	Coupled wheel diameter (same as BR Class 5MT 4-6-0)	mm	1 880
22	Coupled wheel diameter (same as BR Class 5W1 4-0-0)	in	74
23	Coupled wheel rotational speed at $[2] = [2] \div (\pi \times [22])$	Hz	5,3
24	Indicated tractive effort per unit adhesive mass at $[23] = [18] \div [9]$	kN/ton	1,3
25	Max. indicated t. e. per unit adhesive mass at [23] for SAR 26 Class No.	KI V/ tOII	1,5
25	3450: (*) Class 5AT figure, which is therefore considered to be realistic).	kN/ton	1,9
26	Nominal maximum continuous operating speed in mph is taken as the	mph	111
	'1,5 x diameter' speed (AAR std. for motion design), = 1,5 x [22(inches)] =	km/h	178
	This is rounded up to:	km/h	180
27	The locomotive will be tested at 10% over the maximum operating speed,		
	hence maximum design speed = 1,10 x [26]	km/h	198
	This is rounded up to:	km/h	200
	All relevant detail design work shall be based on this speed	mph	125
28	Coupled wheel rotational speed at [26] = [26] \div (π x [22])	Hz	8,5
29	Boiler pressure: (the given figure is the normal maximum working (gauge)		
	pressure: the boiler may be designed for and the safety valves set to a	kPa	2 100
	slightly higher figure for ease of keeping the working pressure in service	psi	305
30	without the safety valves lifting). (cf. A T & S Fe 2-10-4 b. p. = 310 psi) Engine unit. The preferred choice of engine, considering <i>all</i> relevant		
30	parameters, is 2-cyl. simple. The calculations are made for a 2-cyl. simple		
	and show that the desired performance can be realized with this simplest		
	type of engine, having perhaps a lower level of cylinder performance than		
	more complex and expensive multi-cylinder types. (Note: mass of		
	reciprocating parts per side not to exceed 250 kg.) Hence no. of cylinders:	_	2
31	Piston stroke (made long for optimum cylinder efficiency)	mm	800
		in	31,5
32	Mean piston speed at [2] = [23] x [31] x 2	m/s	8,5
		ft/min	1 674
33	Mean piston speed at $[26] = [28] \times [31] \times 2$	m/s	13,5
		ft/min	2 666
34	Various comparisons of mean piston speed:		
	SAR 26 Class no. 3450 at speed for maximum indicated power (122 km/h	,	10.0
	by differentiating equation [1.1.(11)]:	m/s	10,2
	NYC 'Niagara' 4-8-4 at 160 km/h:	m/s	11,5
	N & W J Class 4-8-4 at reported maximum speed of 176 km/h LNER A4 Class at 202 km/h	m/s m/s	14,2 11,7
	BR 9F Class at 144 km/h	m/s	11,7
	Given the 5AT 's superior front end compared to these locomotives, these	111/3	11,7
	figures are considered to confirm the acceptability of items [32] & [33].		
35	Sample starting coefficients of adhesion for 2 cylinder and 4 cylinder		
	(opposed crank) 6-coupled tender engines:		
	BR Standard Class 5MT:	-	0,20
	All BR 2-cylinder standard classes (average value for seven classes):	-	0,21
	Representative pre-nationalization British locos:	-	0,24
	Representative German standard locos:	-	0,30
	Representative modern American-built locos:	-	0,23

Item No.					
36	From [35], a realistic starting coefficient of adhesion for the Class 5AT, all				
	possible adhesion improvements being incorporated, is (see [49]):	-	0,25		
37	For a 2-cylinder engine, typical ratio of peak: mean tractive effort ^[23]	-	1,25		
38	Peak coefficient of adhesion required to prevent 'quarter slip' = [36] x [37]	-	0,31		
39	The maximum available starting coefficient of adhesion may be taken as [Calculations 1.1. Fig. 1.1.2]:				
	Dry rail:		0,34		
	Wet rail:	_	0,26		
	A figure for sanded wet rail is deduced as: ^[24]	-	0,375		
	As the figures for dry rail and sanded wet rail are > [38] the Class 5AT's full		,		
	starting tractive effort should be useable with minimal slipping, provided				
	good (air) sanding is fitted.				
40	Nominal wheel rim tractive effort based on adhesion = [9] x [36]	ton kN	15,0 147		
41	With the usual notation, the tractive effort for a 2-cyl. locomotive is:	KIN	14/		
71	T.E. = $(k \times P \times n \times (d^2 - d_1^2) \times s) \div (2 \times D)$				
	T.E. = $[40]$ = 147 kN, P = $[29]$ = 2100 kPa, n = $[30]$ = 2 ,				
	s = [31] = 800 mm, D = [22] = 1 880 mm				
42	The factor k allows for less than 100% cut off being available and for				
	frictional losses from the pistons to coupled wheels. For the Class 5AT (fully				
	roller bearing equipped and with state of the art tribological design and				
	lubrication) the starting transmission efficiency (= wheel rim work /		0.02		
43	indicated cylinder work) is taken as: ^[1] The ratio of mean effective pressure (m.e.p.): boiler pressure at starting	-	0,93		
43	depends largely on the maximum cut-off. For easy starting of the 2-cyl.	%	75		
	Class 5AT this is made (cf. BR 5MT = 78%)	70	/3		
44	At a cut of $f = [43]$ the ratio of m.e.p.: boiler pressure at starting is deduced				
	from SAR 25NC and 26 Class starting indicator diagrams made at 80% and	-	0,90		
	65% cut off respectively: ^[2]				
45	Factor k in equation $[41] = [42] \times [44]$	-	0,84		
4.6	(generally accepted value with 80% cut-off = 0,85)		00		
46	d_1 = piston rod and piston tail rod outside diameter (BR 5MT = $3\frac{1}{2}$ " = 88,9 mm)	mm	90		
47	Substituting known data into equation [41], cylinder diameter, d:	mm	452		
	This is rounded down to:	mm	450		
		in	17,7		
48	Based on [47] nominal wheel rim tractive effort from equation [41]:	kN	146		
49	(BR Class 5MT = 116 kN). See also item [169]	lbf	32 830 0,248		
50	Based on [48] nominal coefficient of adhesion = $[48] \div [9]$ Net piston face area (front and back) = $\pi/4$ x ($[47]^2 - [46]^2$)	m ²	0,153		
51	Nominal maximum piston thrust, front and back = $[29] \times [50]$	kN	320,6		
31	(BR Class 5MT = 283.7 kN)	lbf	72 098		
52	Stroke: diameter ratio = $[31] \div [47]$: (high for good cylinder efficiency)	-	1,78		
	(BR Class 5MT = 1,47)				
53	Starting indicated tractive effort = $[48] \div [42]$	kN	157		
54	Ratio of indicated tractive effort at [1] and [2]: starting indicated tractive	-	0,48		
	effort = $[18] \div [53]$				
55	Corresponding ratio at maximum power for SAR 26 Class No. 3450 at [23]:		0.62		
	Actual figure from test data: Estimated figure if 3450 had a maximum cut-off = [43]:	-	0,63		
	As these figures are) [54] the Class 5AT figure is considered to be realistic.	_	0,59		
56	Approximate initial estimation of cut-off required at [17] and [2] is made by				
- 0	deduction from data on SAR 26 Class No. 3450. If maximum cut-off of				
	3450 = [43] its starting indicated t. e. would have been approximately:	kN	245,0		
57	[54] x [56]	kN	117,6		
58	Speed of 3450 at [23] with coupled wheel tyre diameter = [1.1. (3)]:	km/h	89,9		
59	Indicated power at [57] and [58] = [57] \times [58]	kW	2 937		

Item No.	Item	Unit	Amount
60	At [58] and [59] cut-off is: ^[3]	%	25
	See item [74] for a more accurate assessment of the required cut-off on the Class 5AT at [2] and [17].		
61	m.e.p. at [17] and [2] = [17] \div ([50] x [31] x 2 x [30] x [23]):	kPa	917
62	[61] ÷ [29]	κι α	0,44
63	Tentative diameter of piston valves:	mm	350
03	This dimension may depend on clearance with the moving structure gauge,	in	13,8
	and the requirement for minimum cylinder clearance volume (item [67]) will probably necessitate the use of two piston valves per cylinder (as for the	111	13,0
	inside cylinder of the SNCF 242A-1 4-8-4), each ≈ 175 mm diameter.		
64	Tentative piston valve steam lap	mm	65
		in	2,56
65	Ratio of valve diameter x lap: cylinder diameter ² = $[63] \times [64] \div [47]^2$ (cf.: value for SAR 26 Class No. 3450 = 0,046 for BR Class 5MT = 0,051)		0,112
66	Tentative piston valve exhaust lap	mm	10
67	Target maximum cylinder clearance volume as % of piston swept volume:		
	Single valves:	%	9
	Double valves:	%	8
68	Indicated work done per piston stroke at [17] and [2] = [17] \div (4 x [23])	kJ	112,3
69	Piston swept volume per cylinder end = $[31] \times [50]$	m^3	0,122
70	Estimated boiler - steam chest pressure drop at [17] and [2]:	kPa	100
	(4,8% of rated boiler pressure)		
71	Estimated steam chest (gauge) pressure at [17], [2] and [29] = [29] – [70]	kPa	2 000
72	Estimated cylinder (gauge) back pressure at [17] and [2]	kPa	50
73	Required inlet steam temperature at steam chest at [17] and [2]	°C	450
74	From the estimated indicator diagram at [17] and [2] (see items [225] –		
	[244] and Fig. 1.3.1) the cut-off required to give work per stroke = [68] at a		
	speed = [2] is (\approx item [60]):	%	26
	This is a good figure, well in the zone of high cylinder efficiency, and		
	confirms the suitability of the cylinder dimensions for the required power		
	output at speed = [2].		
75	Adiabatic steam flow to the cylinders per stroke (see items [249] – [253])	kg	0,204
76	Adiabatic heat drop of steam in cylinders = $[68] \div [75]$	kJ/kg	550
77	Inlet steam enthalpy at [71] and [73] from h – s chart	kJ/kg	3 356
78	Exhaust steam enthalpy = $[77] - [76]$	kJ/kg	2 806
79	Exhaust steam temperature at [72] and [78] from h – s chart	°C	167
80	To allow for heat transfer to the cylinder walls during steam admission (i.e.		
	add the 'missing quantity') item [75] is increased by 5% to:	kg	0,214
	The low value of the 'missing quantity' is a result of using all practical		
	features to reduce it, such as very high superheat, long stroke: diameter		
	ratio, optimum cylinder insulation, high rotational speed at normal train		
0.1	speed, low clearance volume, special engine component design, etc.	1r~/c	155
81	Cylinder steam flow = $(4 \times [23]) \times [80]$	kg/s	4,55
		kg/h lb/h	16 393 36 146
	This is rounded up to:	kg/h	16 400
82	Actual specific work done by steam in cylinders = $[68] \div [80]$	kJ/kg	525
83	Isentropic heat drop from [71] and [73] to [72] from h – s chart	kJ/kg	650
84	Cylinder isentropic efficiency at [2] and [74] = [82] ÷ [83]:	%	81
04	This is not the maximum figure, which will occur at shorter cut-off than item [74]. (cf. BR 8P Class 4-6-2 No. 71000 = 86% at minimum s.s.c.)	/0	01
85	Indicated s.s.c. (based on cylinder steam flow) at [17], [2] & [74] = 1 / [82]	kg/MJ	1,90
	This very low figure for such a high power is a consequence of the high-	lb/hp-h	11,2
	efficiency front end and high superheat (cf. minimum indicated s.s.c. are:		, -
	BR 8P Class 3-cyl. simple 4-6-2 No. 71000 = 12,2 lb/hp-h, SNCF 141P		
	DK 61 Class 3-Cyl. shipte 4-0-2 No. /1000 = 12.2 10/110-11. SNC1 1411		

Item No.	Item	Unit	Amount
86	Leakage steam upstream of the cylinders: experience with SAR 26 Class no. $3450^{[4]}$ gives total leakage past the piston valve rings = 0,5% of [81]	kg/h	82
87	Superheated steam flow = [81] + [86]	kg/h	16 482
88	In addition to the cylinder steam, steam is (typically) required for some/all of the following when the locomotive is under power (* shows that exhaust steam from these auxiliaries may be piped back to the tender tank, totalling ≈ 40% of the total normal auxiliary steam consumption with oil firing): (a) Air compressor* (for brakes, air sanding, air-controlled auxiliaries) or vacuum brake ejector. (b) Mechanical stoker motor* and distributing jets (coal firing) or oil heating* (if required) and atomising (oil firing). (c) Boiler feed pump(s).*		
	(d) Turbo generator.* (e) Cylinder oil heating and (optional) atomising. (f) Cab heating.* (g) Steam heating of coaching stock. (h) Whistle. (+ blower and drifting steam when not under power) For the purpose of these calculations it is assumed the locomotive is fired with gas oil (no oil heating required) and works electrically heated/air con. stock: the sum of this auxiliary steam as a percentage of [87] is taken as:	%	4
89	Auxiliary steam at [1] and [2] = [87] \times [88]:	kg/h	659
90	Total steam generated by the boiler at [1] and [2] = [87] + [89]: (See item [99] for equivalent evaporation.) This is rounded up to:	kg/h lb/h kg/h	17 141 37 796 17 150
91	The saturated/superheated fractions of the auxiliary steam will be decided at the detail design stage. For the present calculation purposes all auxiliary		
92	steam is assumed to be dry saturated at pressure = [29]. Its enthalpy is:	kJ/kg	2 801 3 356
93	Enthalpy of superheated steam leaving superheater ≈ [77] Saturation temperature corresponding to [72] (note: exhaust steam still has some superheat, see item [79]).	kJ/kg °C	112
94	Feedwater temperature at inlet to boiler, after preheating in a surface type exhaust steam feedwater heater (with average (small) fouling deposits on h.t. surfaces): (Note: a considerably higher temperature could be achieved by passing the feedwater through an economizer formed from the front section of the boiler barrel, this being an optional refinement at this stage).	°C	105
95	Feedwater enthalpy at [94]	kJ/kg	440
96	Total heat transferred to the steam leaving the boiler at [1] and [2] = $[87] \times ([92] - [95]) + [89] \times ([91] - [95])$	GJ/h	49,6
97	Heat given to cylinder steam by fuel = $[77] - [95]$	kJ/kg	2 916
98	Cylinder thermal efficiency based on [97] = [82] ÷ [97]	%	18,0
99	Equivalent evaporation at [1] and [2] = $[96] \div 2\ 256,7\ kJ/kg$	kg/h	21 980
100	The combustion air is to be preheated by exhaust steam: required air temperature ≈ (see item [186])	°C	100
101	Probable boiler absorption efficiency at [90] without combustion air preheating ^[5]	%	80
102	Due to item [100] and other factors (low excess air, optimum tube bundle/superheater design, good insulation, (preheater at front of boiler barrel)) boiler absorption efficiency may be increased to: (see item [186])	%	85
103	Heat release rate in firebox at [1] and [2] = $[96] \div [102]$	GJ/h	58,4
104	Firebox volume (same as BR Class 5MT for the purpose of this calculation)	m ³	4,8
105	Heat release rate per unit firebox volume = $[103] \div [104]$: cf. BR Class 5MT at maximum evaporation $\approx 9,4$ GJ/m³-h LMR Class 2 2-6-0 at maximum evaporation $\approx 11,0$ GJ/m³-h SAR 3450 at maximum measured firing rate = $12,6$ GJ/m³-h From Chapelon ^[25] it is deduced that a high oil burning rate = 15 GJ/m³-h.	GJ/m³-h	12,2

Item No.	Item	Unit	Amount
106	Combustion efficiency with "state of the art" oil firing:	%	95
	(99,5% at relatively low value of heat release rate per unit firebox volume is		
	claimed for the Swiss 'Sonvico' system.)		
107	Heat in fuel fired = $[103] \div [106]$	GJ/h	61,5
108	Boiler efficiency at $[90] = [96] \div [107] = [102] \times [106]$:	%	81
	This high efficiency at such a high boiler load is primarily due to the high		
	combustion efficiency possible with modern oil firing technology.		
109	Fuel: for various technical, practical and environmental reasons, oil firing is		
	preferred (see item [192] etc. for coal firing). Its ready availability makes	MJ/kg	42,9
	diesel fuel / gas oil the most practical fuel, of lower calorific value ^[28] :	kcal/kg	10 240
110	Firing rate at [1] and [2] = [107] \div [109]:	kg/h	1 434
111	Assuming burner is of the high pressure atomising type, (superheated)		
	atomising steam required per unit of fuel fired:		
	From Kempe's Engineers Year-book, 1985, p. F2-35:	kg/kg	0,3
	Claimed figure for 'Sonvico' system:	"	0,1
	Assuming average of two figures, it is:	"	0,2
112	Atomising steam flow = $[110] \times [111]$:	kg/h	287
	Note: this is 43% of the estimated auxiliary steam production item [89].		
113	Overall thermal efficiency of locomotive referred to the indicated output at		
	maximum drawbar power = $[17] \div [107]$:	%	13,9
	(Maximum figure for SAR 26 Class No. $3450 = 13,1\%^{[6]}$)		,
114	Overall thermal efficiency of locomotive referred to maximum drawbar		
	power = $[1] \div [107]$:	%	11,1
	This is a very high figure when generating a specific power as high as item		,-
	[20] and trailing a large tender of the same nominal weight as the engine		
	itself. By comparison with the best level achieved with simple expansion		
	locomotives in former times, the BR Class 7MT 4-6-2's at maximum		
	evaporation, generating 17,3 indicated kW per ton of engine weight, gave a		
	drawbar thermal efficiency of 7,7%, and the BR Class 5MT, at its maximum		
	of 17,0 indicated kW per ton of engine weight, gave 6,8%.		
115	The feedwater heat balance is, with the usual notation:		
113	$m_s \times \Delta h_s = m_w \times \Delta h_w$: presuming steam leaves heater as saturated water at		
	pressure = [72], condensate enthalpy is:	kJ/kg	467
116	Average tender water temperature, assumed (with an allowance for warming	K3/K5	107
110	by the condensate and auxiliary exhausts fed back to the tender): (This	°C	20
	temperature will be higher if the tender tank is partitioned to create a 'hot		20
	well'.)		
117		1, 1/1, ~	92.0
117	Tender water enthalpy at [116]	kJ/kg	83,9
118	Substituting known data into equation [115]:	1 /1	2 (11
110	$m_s \times ([78] - [115]) = [90] \times ([95] - [117])$ from which $m_s = \frac{1}{2} = $	kg/h	2 611
119	Fraction of cylinder exhaust steam going to feedwater heater = $[118] \div [81]$	%	16,0
120	Heat balance for the combustion air preheater is:	0.0	
	$m_s \times ([78] - [115]) = m_a \times \Delta h_a$: assume average ambient air temperature:	°C	15
121	Temperature rise of the air passing through the heater = $[100] - [120]$	deg. C	85
122	Specific heat at constant pressure (c _p) for air kJ	/kg deg.K	1,005
123	$\Delta h_a = [121] \times [122]$	kJ/kg	85,4
124	Stoichiometric air: fuel ratio by weight, diesel fuel/gas oil (see item [255])	kg/kg	14,5 : 1
125	Excess air coefficient at [90] and [110], assumed:	-	1,3
-20	Note: this is a 'safe' value, and the combustion equipment must be designed		1,5
	to allow adequately complete combustion with the minimum of excess air.		
126	Combustion air supply, based on fuel fired = [110] x [124] x [125]	kg/h	27 031
127	Substituting known data into equation [120]:	KZ/11	21 031
14/		lzo/h	097
120	$m_s \times ([78] - [115]) = [126] \times [123]$ from which $m_s =$	kg/h	987
128	Fraction of cylinder exhaust steam going to combustion air preheater	0/	6.0
120	= [127] ÷ [81]	%	6,0
129	Total exhaust steam to the feedwater & combustion air heaters	1 /1	2.500
	[= [118] + [127]	kg/h	3 598

Item No.	Item	Unit	Amount
130	Total exhaust steam to the feedwater & combustion air heaters as a fraction	0.4	••
	of the cylinder steam flow = $[129] \div [81] = [119] + [128]$	%	22,0
131	% of cylinder steam flow going to blast nozzles = 100- [130]	%	78,0
132	Steam to blast nozzles = [81] - [129] = [81] x [131]	kg/h	12 802
133	Ratio of combustion gas flow: blast nozzle steam flow = $([110] + [112] + [126]) \div [132]$	kg/kg	2,25 : 1
134	Total condensate piped to the tender from feedwater heater and auxiliaries as a fraction of the total evaporation $\approx ([118] + 0.4 \times [89]) \div [90]$	%	16,8
135	For every unit of tender water evaporated in the boiler, the amount of raw		
136	water is (100 – [134]) Split of supplies: item [12] can be split into fuel and water in any ratio to	%	83,2
130	suit operating conditions, but generally it is now at least as easy to take oil		
	fuel as to take water. In UK steam times, maximum coal supply for the	Imp. ton	10
	longest duties was (for LMR and BR Standard Class 8 4-6-2's):	m. ton	10,2
137	Typical lev of good former British locomotive coal	MJ/kg	32
138	Tender energy capacity = [136] x [137]	GJ	326
139	Corresponding fuel supply of Class $5AT = [138] \div [109]$:		7,6
139	This is rounded down to:	ton	7,0 7
140	Autonomy at [1] and [2] based on fuel capacity = $[139] \div [110]$:	ton h	4,88
141	Range at [1] and [2] based on fuel capacity = [139] : [110].	km	552
141	This is well beyond the distance that the loco would be expected to cover at	mile	345
	constant maximum drawbar power without refuelling, therefore giving a	IIIIC	343
	high fuel capacity safety margin for the expected duty (see also item [151]).		
142	Allowable capacity of tender water tank = [12] – [139]	ton or m ³	46,3
143	Autonomy at [1] and [2] based on water capacity = $[142] \div ([90] \times [135])$	h	3,24
143	Range at [1] and [2] based on water capacity = $[142] \times ([90] \times [133])$		
144	This is well beyond the distance that the loco would be expected to cover at	km	367
		mile	230
	constant maximum drawbar power, so that in practice the range between		
	water replenishments would normally be greater than as given (an exception		
	is if long periods of high power were required at lower speed going upgrade).		
145	Increase in range based on water capacity due to returning auxiliary exhausts		
143		%	20.2
146	& condensate from feedwater heater to tender = (100 ÷ [135]) - 1	70	20,2
146	Representative load factor (defined as ratio of (distance) average cylinder		0.5
1.47	power : full rated cylinder power) in normal service Specific fuel and water consumptions will be fairly flat functions of power	-	0,5
147			
	under typical charter train operating conditions, except for relatively high		
	values during periods of acceleration. Fuel and water consumption rates at		
	load factor = [146], as fractions of the full load consumptions, are therefore		0.6
148	conservatively estimated as: Under representative average service conditions, autonomy based on fuel	 -	0,6
146		h	0 12
149	capacity = [140] ÷ [147] Under representative average service conditions, autonomy based on water	11	8,13
149		h	5.40
150	capacity = [143] ÷ [147] With a maximum operating speed = [26] the average train speed can	h km/h	5,40 113
130	conservatively be assumed = [2]:		71
151	Under representative average service conditions, range based on fuel	mph	919
131	capacity = [148] x [150]	km	(920)
	Capacity = [170] x [130]	mile	575
152	Under representative average service conditions, range based on water	km	610
132	capacity = [149] x [150]. If extra range is required, a simple water tank car	mile	380
	could be added behind the tender and/or part of any support vehicle (if	IIIIC	300
	required for providing electrical power for train heating or air con. etc.)		
	could be fitted with an auxiliary water tank.		
153	Relative density of diesel fuel / gas oil	 	0,83
154	Volume of tender fuel tank (for gas oil) = $[139] \div [153]$	m ³	
			8,4
155	Approximate cross sectional area of tender fuel tank	m ²	1,4

Item No.	Item	Unit	Amount
156	Approximate length of tender fuel tank = $[154] \div [155]$	m	6,0
157	Approximate volume of tender water tank well section between bogies	m^3	5,5
158	Approximate cross sectional area of tender water tank, excluding well section	m ²	4,8
159	Approximate length of tender water tank = $([142] - [157]) \div [158]$	m	8,5
	To allow for volume occupied by internal tank bulkheads, etc., this is		
	increased to:	m	9,0
160	Approximate overall length of engine and tender over buffers:	m	22,1
	(cf. LNER A1 Class = 22,2 m, LMS 'Coronation' Class = 22,5 m, LMS 'Princess Royal' Class = 22,7 m)	ft	72,5
161	Ratio of length of engine : length of tender (engine length same as for BR Class 5MT)	-	1,26 : 1
162	Approximate overall wheelbase of engine and tender	m ft	18,9 62,0
163	Summary of design maximum axle loads (static, excluding any dynamic		
	augment, and based on 20 ton total leading bogie load):		
	(a) per axle:	ton	20,0
	(b) per metre of engine rigid wheelbase:	ton/m	12,7
	(c) per metre of total wheelbase (engine and tender):	ton/m	8,5
	(d) per metre of total length over buffers:	ton/m	7,2
164	According to Koffman ^[7] the specific starting resistance on level tangent	kg/ton	7
	track for roller bearing stock is:	N/ton	69
165	Applying this to the average tender mass in service gives starting resistance of tender = $[15] \times [164]$	LAI	4.2
1//		kN	4,3
166	Specific starting resistance of engine will be greater than [164] on account o more machinery to set in motion: it is taken as:	N/ton	100
167	Starting resistance of engine = $[6] \times [166]$	kN	8,0
168	Total starting resistance of engine and tender = $[165] + [167]$	kN	12,3
169	Starting drawbar tractive effort on level tangent track = $[48] - [168]$:	kN	133,7
	This is rounded up to:	kN	134
		lbf	30 132
170	Starting drawbar efficiency (= e. db. t.e. \div wheel rim t.e.) = [169] \div [48]:	%	92
	This is rather low for a roller bearing equipped locomotive, probably partly		
	because item [166] may be less than assumed, but also reflecting the large		
	tender mass for the locomotive's nominal tractive effort.		
Sı	upplementary calculations to check the assumed boiler absorption efficier	cy, item [10	2]
171	Boiler absorption efficiency = (heat transferred to water/steam in boiler and		
	superheater ÷ heat released in firebox).		
172	Heat transferred through heat transfer surfaces = (heat transferred to		
	water/steam in boiler and superheater + boiler radiation loss). The radiation		
	loss from a boiler with average quality of insulation as a % of the energy in		
	the fuel burnt at full load (boiler stress $\approx 100 \text{ kg/m}^2\text{-h}$ for the boilers		
	$ concerned ^{[8]} \approx$	%	3
173	For a heavily insulated modest-size boiler at very high boiler stress		
	$(\approx 112 \text{ kg/m}^2\text{-h at } [90]$, assuming for the purpose of these calculations the		
	same total evaporative heating surface area as the BR 5MT (153,3 m ²))		
	assume this is reduced to:	%	2
174	Heat lost by radiation $\approx [103] \times [173]$	GJ/h	1,2
175	Heat transferred through boiler and superheater heat transfer surfaces = ([96		,
	+[174]) = (([102] x [103])+ [174])	GJ/h	50,8
176	[175] = {heat entering the firebox + heat generated by combustion – heat lost in smokebox gases}		
177	Heat entering the firebox = {heat in combustion air + heat in atomizing		
•	steam + heat in fuel. The last is negligible and is ignored (this gives a		
		kcal/N*m ³	31
	enthalpy-temperature (h-t) chart [Fig. 1.3.2.] enthalpy of air at [100]:	kJ/kg	100
	Chinalpy-temperature (n-t) chart [1 1g. 1.3.2.1 chinalpy of all at 1 1001.		100

179	Item No.	Item		Unit	Amount
is then	179	For purposes of this check atomizing steam is assumed to be superheated			
From equation 176 heat lost in smokebox gases			am		
= ([178] + [179]) + [103] - [175] = GJ/h 11.28 Smokebox gas flow = [110] + [112] + [126] kg/h 28.752 Smokebox gas enthalpy = [180] + [181] kJ/kg 392 Smokebox gas enthalpy = [180] + [181] kJ/km²² 312 Smokebox gas enthalpy = [182] x [183] kJ/k²m²² 1.3 Smokebox gas enthalpy = [182] x [183] kJ/k²m²² 1.3 Smokebox gas enthalpy = [182] x [183] kJ/k²m²² 1.3 184 Smokebox gas enthalpy = [182] x [183] kJ/k²m²² 1.3 184 Smokebox gas enthalpy = [182] x [183] kJ/k²m²² 1.3 184 J/k²m²² 1.3 185 From combustion gas enthalpy-temperature chart [Fig. 1.3.2.] at [184], [109] and [267], temperature of gases leaving the boiler tube bundle is: "C 357 357				GJ/h	0,96
181	180			0.7.11	44.00
182 Smokebox gas enthalpy = [180] + [181] Jk/kg 392	101				
183 Smokebox gas density at [125] ≈ kg/N*m³ 1,3 184 Smokebox gas enthalpy = [182] x [183] kJ/N*m³ 1,3 187 kg/N*m³ 122 185 From combustion gas enthalpy-temperature chart [Fig. 1.3.2.] at [184], [109] and [267], temperature of gases leaving the boiler tube bundle is: °C 357					
184					
Real/N*m² 122					
185 From combustion gas enthalpy-temperature chart [Fig. 1.3.2.] at [184], [109] and [267], temperature of gases leaving the boiler tube bundle is: 186 For SAR loco No. 3450 smokebox gas temperature at steam temperature = [73] 187 18	184	Smokebox gas enthalpy = $[182] \times [183]$			
and [267], temperature of gases leaving the boiler tube bundle is: For SAR loco No. 3450 smokebox gas temperature at steam temperature = [73] ⁹] is: This is significantly > [185], which however should be possible with a steam temperature = [73] by careful design of the superheater. If so, the boiler absorption efficiency estimate, item [102], is shown to be acceptable by items [175], [176], [180] & [185]. However the importance of optimizing all items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187	105	Energy		ai/N*m	122
186	185		J9]	°C	257
This is significantly > [185], which however should be possible with a steam temperature = [73] by careful design of the superheater. If so, the boiler absorption efficiency estimate, item [102], is shown to be acceptable by items [175], [176], [180] & [185], However the importance of optimizing all items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187	196		_	C	337
This is significantly > [185], which however should be possible with a steam temperature = [73] by careful design of the superheater. If \$so, the boiler absorption efficiency estimate, item [102], is shown to be acceptable by items [175], [176], [180] & [185]. However the importance of optimizing all items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187	180		_	°C	405
temperature = [73] by careful design of the superheater. If so, the boiler absorption efficiency estimate, item [102], is shown to be acceptable by items [175], [176], [180] & [185]. However the importance of optimizing all items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187			am		403
absorption efficiency estimate, item [102], is shown to be acceptable by items [175], [176], [180] & [185]. However the importance of optimizing all items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187			alli		
items [175], [176], [180] & [185]. However the importance of optimizing all items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187					
items affecting boiler absorption efficiency is indicated (especially the combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187			all		
combustion equipment, to minimize excess air, item [125] being considered a maximum figure at full boiler load, and also the need for a combustion air supply temperature of at least 100 °C (item [100]). 187					
Supply temperature of at least 100 °C (item [100]).			ed		
187		a maximum figure at full boiler load, and also the need for a combustion a	ir		
[120]) enthalpy of combustion air entering firebox (from Fig. 1.3.2.) = kJ/kg 16,2 188 Heat in combustion air = [126] x [187]					
188	187				
189 Heat lost in smokebox gases = ([188] + [179]) + [103] - [175] = GJ/h 9,0 190 Smokebox gas enthalpy = [189] ÷ [181] kJ/kg 313 kcal/N*m³ 97 191 From combustion gas enthalpy-temperature chart [Fig. 1.3.2.] at [190], [109] and [267], temperature of gases leaving the boiler tube bundle would be: This is considered unrealistic for a steam temperature = [73], therefore the necessity of a combustion air preheater is confirmed. Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System) 192			kJ/kg	16,2	
Smokebox gas enthalpy = [189] ÷ [181] kJ/kg kal/N*m³ 97	188			GJ/h	0,44
Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System)	189				
From combustion gas enthalpy-temperature chart [Fig. 1.3.2.] at [190], [109] and [267], temperature of gases leaving the boiler tube bundle would be: This is considered unrealistic for a steam temperature = [73], therefore the necessity of a combustion air preheater is confirmed. Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System)	190	Smokebox gas enthalpy = $[189] \div [181]$	kJ/kg		
and [267], temperature of gases leaving the boiler tube bundle would be: This is considered unrealistic for a steam temperature = [73], therefore the necessity of a combustion air preheater is confirmed. Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System) 192				al/N*m³	97
This is considered unrealistic for a steam temperature = [73], therefore the necessity of a combustion air preheater is confirmed. Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System) 192	191		9]	0.5	
necessity of a combustion air preheater is confirmed. Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System)				°C	283
Supplementary calculations for coal firing (GPCS = Gas Producer Combustion System)			;		
192 L.C.V. of locomotive coal now available, assumed: 193 Coal fully burned ≈ [103] ÷ [192] (note: is approximate as some constituents of coal burn preferentially to others) 194 Ash content of coal of L.C.V. = [192] ≈ 195 Coal gasified during combustion = [193] x (1-[194]) 196 Firegrate area (here assumed same as BR Class 5MT, although a larger (longer) grate will be fitted if possible) 197 Specific burning rate = [193] ÷ [196] 198 Maximum sustained specific burning rate, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 200 [198] < [197] < [199]. The burning rate at [90] with coal firing would therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air : fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to verage GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion (4) Primary air as a % of total combustion air				G ()	
193 Coal fully burned ≈ [103] ÷ [192] (note: is approximate as some constituents of coal burn preferentially to others) 194			oustic		20
of coal burn preferentially to others) 194		,	_		
194	193		nts	Kg/II	1 94 /
195 Coal gasified during combustion = [193] x (1-[194]) kg/h 1 791 196 Firegrate area (here assumed same as BR Class 5MT, although a larger (longer) grate will be fitted if possible) m² 2,67 197 Specific burning rate = [193] ÷ [196] kg/m²-h 729 198 Maximum sustained specific burning rate, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 638 199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[11] ≈ kg/m²-h 830 200 [198] < [197] < [199]. The burning rate at [90] with coal firing would therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air : fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to overage GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air 96 30 40 50 100	104			0/	0
196 Firegrate area (here assumed same as BR Class 5MT, although a larger (longer) grate will be fitted if possible) m² 2,67 197 Specific burning rate = [193] ÷ [196] kg/m²-h 729 198 Maximum sustained specific burning rate, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 638 199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[11] ≈ kg/m²-h 830 200 [198] < [197] < [199]. The burning rate at [90] with coal firing would therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air : fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to 'classical' combustion (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion Primary air as a % of total combustion air % 30 40 50 100					
Clonger) grate will be fitted if possible m² 2,67				kg/h	
197 Specific burning rate = [193] ÷ [196] kg/m²-h 729 198 Maximum sustained specific burning rate, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 638 199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[11] ≈ kg/m²-h 830 200 [198] < [197] < [199]. The burning rate at [90] with coal firing would therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air : fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to optimum GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100	196				
198 Maximum sustained specific burning rate, SAR 26 Class No. 3450 ^[10] ≈ kg/m²-h 638 199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[11] ≈ kg/m²-h 830 200 [198] < [197] < [199]. The burning rate at [90] with coal firing would therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air: fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to 'classical' combustion (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100	107				
199 Burning rate at the apparent grate limit, SAR 26 Class No. 3450 ^[11] ≈ kg/m²-h 830 200 [198] < [197] < [199]. The burning rate at [90] with coal firing would therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air : fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to 'classical' combustion (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion Primary air as a % of total combustion air % 30 40 50 100					
200					
therefore be near the absolute maximum possible with loco. No. 3450, however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air: fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to 'classical' combustion (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100				kg/III -n	830
however the better GPCS conditions on the Class 5AT, allowing a higher 2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air: fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100	200				
2dy/1ry air ratio, favour the possibility of high specific combustion rates. 201 Stoichiometric air: fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to 'classical' combustion (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100					
201 Stoichiometric air : fuel ratio by weight for coal of L.C.V. = [192] ≈ kg/kg 10 202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100					
202 Combustion air flow = [193] x [201] x [125] (c.f. item [126] for oil firing) kg/h 25 311 203 For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100	201			kg/kg	10
For the following analysis four levels of primary air flow are considered: (1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100					
(1) 30% of total combustion air as primary air, corresponding to optimum GPCS operation (2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100				кg/n	23 311
(2) 40% of total combustion air as primary air, corresponding to average GPCS operation (3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100	203		CD4	CC anamati	\n
(3) 50% of total combustion air as primary air, corresponding to poor GPCS operation (4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100					
(4) 100% of total combustion air as primary air, corresponding to 'classical' combustion 204 Primary air as a % of total combustion air % 30 40 50 100					ı
204 Primary air as a % of total combustion air % 30 40 50 100					
	204				100
[200 1111mm, mi 1011 202] N [201] Rgill 7.575 10.124 12.055 25.511					
	203	100 100	'	12 033	25 511

Item No.	Item				Unit	Amount
(204)	Primary air as a % of total combustion air	%	30	40	50	100
206	Average value of clinker control steam required					
	per kg of primary air ^[12]	kg/kg	0,12	0,12	0,12	-
207	Clinker control steam flow =[205] x [206]	kg/h	911	1 215	1 519	0
208	1ry air + clinker control steam = [205]+[207]	kg/h	8 504	11 339	14 174	25 311
209	Specific primary air + clinker control steam	_				
		g/m ² -h	3 185	4 247	5 309	9 480
210	At [209] combustion efficiency (deduced from ^[13])	%	<u>83</u>	75	66	< 50
211	% free gas flow area through firebed ≈	%	15	20	25	40
	(In a truly packed bed the % free gas flow area					
	would be $< 10\%$ [14] but the figures here allow for					
	progressive 'unpacking' of the firebed which					
212	occurs as the air flow rate increases.)	°C	000	1 000	1 200	1.400
	Combustion gas temperature at firebed top ^[15] ≈		900	1 000	1 200	1 400
213 214	Comb. gas spec. vol. at [212] (taken = that of air) Combustion gas velocity at top of firebed =	m ³ /kg	3,3	3,6	4,2	4,7
214	[209] x [213] ÷ [211]	m/s	19,5	21,2	24,8	30,9
215	Size of coal particles which will be carried off	111/3	17,5	21,2	24,0	30,7
213	firebed at [214] ^[16]	mm	4,8	5,3	7,1	10,7
216	Particle mass \propto (linear dimension) ³ . Therefore		.,0		,,,	10,7
	mass of coal particles carried off firebed as % of	%	100	135	325	1 110
	that for 30% 1ry air = $([215] \div 4.8)^3 \times 100\%$					
217	This analysis is approximate and assumes even air	flow thr	ough the	fire – cha	nneling co	uld greatly
	increase the size of coal particles carried off. It s					
	which can be lifted off the firebed as the 1ry air fl	ow incre	ases ([21	6]) and th	e correspon	nding drop
	in combustion efficiency ([210]) (judicious direct					
	return escaping particles to the fire) Item [210] ind					
	needed for combustion efficiency with coal firi 'Classical' 100% 1ry air combustion will be unacc					
	limit would prevent it from attaining the required					
	5AT - ideal for the GPCS - near-optimum combu					
	kind of (high volatile) coal, so the analysis is cont					
	primary air, giving 83% combustion efficiency at the					
218	Specific firing rate = $[197] \div [210]$]	kg/m²-h	878
219	Firing rate = $[218] \times [196]$				kg/h	2 345
			[17]		ton/h	2,35
220	Allowable sustained hand firing rate for a single fir	eman in	UK[1/]:		lb/h	3 000
	[219] is 72% higher than [220], therefore a mechan	ncal stok	er is oblig	gatory	kg/h	1 360
221	for obtaining full rated boiler output.	ites — [1.4	01 [210	1 —	40.00	11,5
221	To give same range as with oil firing, bunker capace. This is 64% > item [139] and would reduce the way] —	ton	11,3
	approximately 10% for a total supplies weight = $[1]$			oal fuel		
	a closer relationship between the ranges based on f					
	than is the case with oil firing may be advantageou			шрршов		
222	Mechanical stoker steam jet consumption ≈				kg/h	100
223	Total combustion gas flow through the boiler tubes	,=			-	
	$[195] + [202] + [207] + [222]$ (c.f. item [181] for α	oil firing)			kg/h	28 113
224	Summary . With coal as fuel the rated boiler outp					
	combustion efficiency than assumed for oil firing,					
	consumption will slightly reduce the operating ra					
	combustion efficiency of 83% (item [210]) the cha					
	self-cleaning and spark –arresting smokebox. How than it does with oil firing as steam demand decr					
	part load to that at full load may be better than f					
	service conditions the difference in performance be					
	than indicated by these calculations. Better perform					
	coal of higher calorific value than given in item [19					*
		_				

em No.	Item	Unit	Amoun
	mentary calculations for obtaining the estimated indicator diagram at [2] a	nd [17], F	ig. 1.3.1.
225	Known data is;	1.0	2 000
	Steam chest pressure (assumed constant during cycle) (item [71])	kPa	2 000
	Exhaust steam pressure (item [72])	kPa	50
	Piston swept volume, each end of cylinder (item [69])	m ³	0,122
	Cylinder clearance volume, assuming twin piston valves (item [67])	%	8
226	Indicated work per piston stroke (item [68])	kJ	112,3
227	The following data required for drawing the estimated indicator diagram is		
	deduced from indicator diagrams made on SAR 26 Class locomotive No.		
	3450. The speed of this locomotive at coupled wheel rotational speed =		
	[23] is 89,9 km/h (item [58]) and the nearest diagram to this speed and a		
	cut-off = 25% item [60] is at 84 km/h and 28% cut-off [18]. For this		
	diagram, ΔP at point of cut-off, as a % of the peak cylinder pressure, is:	%	16
228	ΔP at point of cut-off is dependent on factors such as the mean inlet port	70	10
220	opening relative to the cylinder volume, cylinder wall effects, and		
	particularly the speed of valve closure, which are more optimal on the	0/	10
	5AT. Therefore ΔP for the 5AT is taken as:	%	12
	Note: the 5AT peak cylinder pressure is assumed = steam chest pressure	1.5	1 = 60
229	Cylinder pressure at cut-off = $[71] \times (1 - [228])$	kPa	1 760
230	From the 3450 diagrams, peak cylinder pressure is generally reached after		
	dead centre. For the diagram concerned the piston position at peak		
	pressure as a % of the stroke, ΔS , is:	%	7
231	Due to various beneficial factors on the 5AT (e.g. longer lead, lower		
	clearance volume and reduced wall effects) ΔS is taken as:	%	2
232	For 3450, the maximum pressure reached at dead centre as a % of the peak		
	cylinder pressure (ideally 100%) is:	%	64
233	Due to the various beneficial factors on the 5AT given in item [231],	7.0	01
233	[232] is conservatively increased to:	%	80
234		kPa	1 600
	Maximum pressure at dead centre = $[71] \times [233]$ Caprotti gives the index of expansion as 1,2 ^[19] and Porta as 'smaller than ad		
235			
	However due to the high superheat [73] and all cylinder design factors aimed		
	expansion will be close to isentropic and may be assumed to follow the curv		
	is absolute pressure. This is confirmed by expansion lines of high-speed diag	grams takei	1 on 3450
236	For the 3450 diagram, % of the piston stroke at which pressure departs		
	from the expansion line at the start of release \approx	%	84
237	Due to longer exhaust lap, [236] is increased for the 5AT to:	%	85
238	For the 3450 diagram, gauge pressure at the end of the stroke as a % of the		
	gauge back pressure:	%	200
239	[238] is retained for the 5AT: pressure at end of stroke = [72] x [238]	kPa	100
240	For the 3450 diagram, % of the return stroke at which pressure falls to the	KI U	100
∠+0	back pressure line (assumed same for the 5AT):	%	7
2/1		/0	/
241	For the 3450 diagram, % of the return stroke at the apparent compression		
	point, i.e. the point at which the valve commences to close to exhaust and	0./	5 .0
	where the exhaust pressure starts to rise above the back pressure line:	%	76
242	Due to longer exhaust lap [241] is decreased for the 5AT diagram to:	%	75
243	The compression is effectively isentropic, $[^{19}]^{[20]}$ i.e. pv ^{1.3} = k. Point [242] do	oes not def	ine the tru
	start of the compression line ^[21] but is assumed to do so for the purposes of the	nese calcula	ations (a
	'safe' assumption as it reduces the diagram area).		
244	The foregoing gives all data for drawing the estimated indicator diagram		
	except for the cut-off. Diagrams are drawn, starting with the roughly		
	estimated cut-off, item [60], until the diagram area matches the required		
	indicated work [226]. This diagram is given in Fig. 1.3.1. from which the		
		%	26
245	required cut-off for a cylinder power item [17] at a speed item [2] is:	7/0	26
245	From Fig. 1.3.1. the gauge compression pressure at the moment the valve	1.5	000
	opens to lead steam ≈	kPa	800
246	Assuming isentropic compression from the back pressure line at [72] and		
240	[79], the temperature of the compressed steam at [245], from h – s chart:	°C	395

Item No.			Item				Unit	Amount
247		ut in practice th						
		to the exhaust st						
		igher than [79];			the start of cor	npression		
249		ore, the temperat			[50]		1 _r D _o	017
248		m.e.p. at [17] an tary calculation				flow itom	kPa	917
249		Porta is used ^[22]					[/ ɔ].	
249		stituted by an ed						
		equating the hat				, equal	kPa	1 880
250		49] the steam sp				3:	m³/kg	0,166
251		nt (A) Fig. 1.3.1			,		m ³	0,0056
252	Volume at poi	nt (B) Fig. 1.3.1					m^3	0,0395
253		admitted per str					kg	0,204
		abatic quantity, i				e cylinder		
		at transfer results						
		nd specific volum						
	by item [80].	l (i.e. the so-call	eu missin	g quantity), and this is a	ioweu ioi		
		tary combustio	n calculat	ions for ite	em [124] and	use of Fig. 1	.3.2.	
254		uses the method						l air per kg
		made, for diese						
	combustion on	ly and excludes	atomizer s	team.				
255	Constituent	kg per 100	÷ mol	= kmol	kmol of O ₂	Th	neoretical	air
	G 1	kg of oil ^[27]	weight	- 10	required	10.51	100/01	.
	Carbon	86,3	12	7,19	7,19	= 10,51 x		
	Hydrogen Sulphur	13,2 0,5	2 32	6,60 0,02	3,30 0,02		0,0 x 28,9 5 kg air /	
	Sulphui	0,5	32	0,02	$\Sigma = 10,51$		item [124	
256	Actual air = 50) kmol/100 kg o	il x [125]		_ 10,01		00 kg oil	65
257		ion air = $[256]$ x					00 kg oil	51,35
258		combustion air		257]			00 kg oil	13,65
259		f combustion (fl						
		m [255] column					00 kg oil	7,19
		n [255] column					00 kg oil	0,02
		8] - [255] Σ colu	mn 6 =				00 kg oil	3,14
	(iv) N_2 (item [257]) = (v) H_2O (from [255] column 5)						00 kg oil 00 kg oil	51,35 6,60
260	Total of item [13)				00 kg oil	68,30
261		as composition b	v volume	= [259] ÷ [2601	KIIIOI/ I	oo kg on	00,50
	(i) $CO_2 =$	as composition o	y voidille	[=07] [%	10,53
	(ii) $SO_2 =$						%	0,03
	(iii) $O_2 =$						%	4,60
	(iv) $N_2 =$						%	75,18
262	(v) $H_2O =$	200/ (:	-7) 1	. 1001	1 0 1 0		%	9,66
262		= 30% (item [125 260]) x (86,3 ÷		ın 100 km	of of dry flue	12	mol	10,53
263		0 kg of oil (from		ımn 5)			mol	7,19
264		iced per 100 kg			÷ [262]) = [260		11101	7,17
20.	=	icea per 100 kg	01 011 10	3 A ([203]	[202]) [20		00 kg oil	68,3
265	Composition o	of [264] (final nu	mbers in e	quations a	re molecular		<u> </u>	- ,-
	weights):			•				
		264] x [261](i) x					00 kg oil	316,4
		264] x [261](ii) x					0 kg oil	1,0
		4] x [261](iii) x					00 kg oil	100,5
		54] x [261](iv) x 264] x [261](v) x					00 kg oil 10 kg oil	1 437,8 118,8
266	Total of item [10 - [239	<u> </u>			0 kg oil	1 974,5
200	1 Tomi of item [Kg/10	, ng 011	1 / г т,

Item No.	Item	Unit	Amount
267	Fraction of CO_2 in combustion gas = [265](i) ÷ [266] (for use in	%	16,0
	Fig. 1.3.2.)		
268	Total combustion gas flow, including atomizer steam =		
	$(([266] \div 100) \times [110]) + [112] =$	kg/h	28 601
	This gives good agreement with item [181] (within 0,5%).		

D. Wardale Inverness 2002-08-15

References.

- 1. Wardale D., *The Red Devil and Other Tales from the Age of Steam*, published by the author, Inverness, 1998: page 457 Table 78.
- 2. Ibid. pages 254 & 264.
- 3. Ibid. page 268, Fig. 83 (extrapolated).
- 4. Ibid. page 321.
- 5. *Ibid.* page 294, Fig. 109 & page 457, Table 78.
- 6. *Ibid.* page 277.
- 7. Quayle J. P., Editor, *Kempe's Engineers Year-Book*, 90th Edition, Morgan-Grampian Book Publishing Co. Ltd., London, 1985: page J3/5.
- 8. Wardale D., *The Red Devil and Other Tales from the Age of Steam*, published by the author, Inverness, 1998: page 80, Fig. 21 & page 295, Fig. 110.
- 9. *Ibid.* page 310, Fig. 131 (best characteristic).
- 10. Ibid. derived from Fig. 109, page 294.
- 11. Ibid. derived from Figs. 108 & 109, page 294 and Fig. 111, page 296.
- 12. Ibid. page 287.
- 13. Ibid. deduced from Fig. 27, page 88.
- 14. Ibid. page 302.
- 15. Ibid. page 89.
- 16. Ibid. page 82, Fig. 24.
- 17. Ibid. page 498.
- 18. *Ibid.* page 259, Fig. 75.
- 19. Phillipson E. A., Steam Locomotive Design: Data and Formulae, The Locomotive Publishing Co. Ltd., London, 1936, page 52.
- 20. Porta. L. D., Fundamentals of the Porta Compounding System for Steam Locomotives (unpublished), page 32.
- 21. Ibid. page 9-7, Fig. 7.
- 22. Ibid. pages 9-1 & 9-1a, Fig. 1.
- 23. McArd G. W., Problems of Locomotive Torque, The Railway Gazette, February 27, 1953.
- 24. Wardale D., *The Red Devil and Other Tales from the Age of Steam*, published by the author, Inverness, 1998: page 336, Fig. 141.
- 25. Chapelon A., *La Locomotive a Vapeur*, English edition, translated by Carpenter, G. W., Camden Miniature Steam Services, Bath, 2000, page 90.
- 26. Quayle J. P., Editor, *Kempe's Engineers Year-Book*, 90th Edition, Morgan-Grampian Book Publishing Co. Ltd., London, 1985: pages F2/47-48.
- 27. Ibid. page F2/22, Table 20 (average of diesel fuel and gas oil).
- 28. Ibid. page F2/22, Table 20.